
Contents
QuickTime for Windows Developer's Manual

Preface

Section I. QuickTime for Windows Overview
A. QuickTime for Windows Concepts
B. The QuickTime for Windows Environment
C. QuickTime for Windows Applications
D. QuickTime for Windows vs. QuickTime for the Macintosh
E. Preparing Macintosh movie and picture files for QuickTime for Windows

Section 2. A QuickTime for Windows Tutorial
A. Introduction
B. WINPLAY1 - Your First QuickTime for Windows Program
C. STEREO - Managing Multiple Movies
D. BIGEIGHT - Movie Controller Attributes
E. FILTERS - Using Action Filters

Section 3. Programmer's Reference
A. QuickTime for Windows API - Functions
B. QuickTime for Windows API - Data Structures

Appendices
Appendix A. QuickTime for Windows Error Codes
Appendix B. Region Codes

Preface

About the QuickTime for Windows Documentation
This document is the official programmer's manual for developers of QuickTime for Windows-aware
applications in the Microsoft Windows environment. Unlike the Macintosh version, the current release of
QuickTime for Windows handles movies in play mode only. As a result, this manual focuses on an
QuickTime for Windows entity known as the Movie Controller. All movies must be under the direct
supervision of movie controllers, and most of the programmatic interface presented in the Tutorial and
Programmer's Reference sections of this on-line manual is devoted to supporting the creation and
functionality of this entity.

This approach was taken because much of the existing documentation for QuickTime for Windows on the
Macintosh covers implementation areas not yet available to the Windows developer. General architectural
overviews and design perspectives of QuickTime for Windows are covered, but material which could
distract or otherwise prevent developers from running movies in their Windows programs as soon as
possible has been kept to a minimum. If the developer wishes further information on how movies are
created and edited, or about the internals of QuickTime for Windows itself, he or she should consult the
Apple QuickTime documentation.

To get the greatest benefit from this manual, the developer should already be familiar with the Windows
development tools and the Microsoft C programming language environment.

A. QuickTime for Windows Concepts
As a QuickTime for Windows developer, you will need to understand the various high level strategies and
paradigms that QuickTime for Windows incorporates before you design and code your own QuickTime for
Windows applications. These concepts fall into several categories: what QuickTime for Windows is, how
programs incorporate it, what is normal QuickTime for Windows behavior and what is the responsibility of
the application, and so forth. This section gives you enough background on these concepts to proceed to
the tutorial section and start writing your own QuickTime for Windows programs.

Related Topics:
1. What is QuickTime for Windows?
2. Movies and Time
3. Active and Inactive Movies
4. The Movie Controller
5. Initialization and Termination of QuickTime for Windows Programs
6. Associating Movies with Movie Controllers
7. Playing Movies through a Movie Controller
8. Attached and Detached Movie Controllers
9. Active and Inactive Movie Controllers
10. Movie Size and Position
11. Movie Controller Attributes
12. Badges
13. Actions and Filters
14. Pictures
15. Getting Pictures from Movies
16. Getting User Data from Movies
17. Getting System Data from Movies
18. Cover Procedures
19. QuickTime for Windows Error Handling

1. What is QuickTime for Windows?
QuickTime for Windows is a technology that lets your Microsoft Windows programs play QuickTime
movies and view QuickTime pictures. QuickTime is Macintosh-based software that can create movies as
well as play them.

A movie playing in a Windows application can be directly manipulated by the user with a special control
bar called a movie controller, usually found attached to the bottom of the movie window. Any Windows
program can play one or more QuickTime for Windows movies, from sophisticated word processors and
spreadsheets to standalone applications created specifically to play movies.

To make your Windows programs QuickTime for Windows-capable, you will have to modify their source
code, recompile and relink them with the QuickTime for Windows libraries. This document will guide you
through that process.

2. Movies and Time
A traditional movie, whether stored on film, laser disk or tape, is a continuous stream of data. To the
Windows developer, a QuickTime movie is a standard DOS file with an extension of .MOV. A movie file
contains digitized visual and sound data along with sequencing information describing the order in which
the movie frames should be played. When the file is opened, the data is assigned a movie object. It is still
not playable as a movie, however, until it is associated with a movie controller.

Movies may be played on Windows machines, but not saved in any form. You must use Macintosh-based
QuickTime software to edit movies. An individual movie frame may be copied to the Windows clipboard.
Of course, movie files can be copied or renamed outside of QuickTime for Windows applications just like
any other DOS files. Further information on Macintosh QuickTime movie files can be found in the
QuickTime documentation.

A QuickTime movie is completely self-contained. All of its visual and sound data exists in a single DOS
file, which is referenced by a QuickTime for Windows program through QuickTime for Windows API calls
when the time comes to load it. Your application need never work directly with movie data, as QuickTime
for Windows routines allow your programs to manage movie content and characteristics while they are
playing under Windows.

Movies are instantiated and later freed by several QuickTime for Windows functions. OpenMovieFile
opens the file containing the movie, just like any DOS file. NewMovieFromFile extracts movie data from
the opened file and assigns a movie object to that data. This object is the means by which the movie will
be played. CloseMovieFile closes the file normally. DisposeMovie frees the movie object.
MovieFile mfMovie;
Movie mMovie;
·
·

OpenMovieFile ("MYMOVIE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);
·
·

DisposeMovie (mMovie);
Understanding time management of media is essential to understanding QuickTime for Windows routines
and data structures. QuickTime for Windows defines time coordinate systems that anchor a movie to a
common temporal reality--the second. A time coordinate system contains a time scale scored in time
units. The number of units that pass per second quantifies the scale. For example, a time scale of 26
means that 26 units pass per second and each time unit is 1/26 of a second.

A time coordinate system also contains a duration, which is the length of the movie in number of time
units it contains. Particular points in a movie can be identified by a time value, which is the number of time
units to that point.

The last of QuickTime for Windows time-related concepts is the idea of rate. A movie's rate is expressed
as a multiple of its time scale. For instance, in a movie with a time scale of 2 played at rate of 2.5, five
time units would pass in one second.

3. Active and Inactive Movies
Movies have active and inactive states. The most distinctive feature of an inactive movie is that it simply
cannot be played. QuickTime for Windows accomplishes this by not giving the movie any time slices from
its internal scheduler. Visually, the movie appears to be paused, but any attempt to start it will fail until the
movie is activated.

You can make a movie active or inactive when you extract it from a file, or change its state later. In the
code fragment above, the movie is made inactive by setting the fifth parameter of NewMovieFromFile to
0. Using newMovieActive instead makes it active:

MovieFile mfMovie;
Movie mMovie;
·
·

NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, newMovieActive, NULL);
To set the movie's state dynamically, you can use the routine SetMovieActive:
Movie mMovie;
BOOL bState;
·
·

SetMovieActive (mMovie, bState);
A movie's state can be queried via the function GetMovieActive.

It is good QuickTime for Windows style to keep a movie inactive until you are ready to play it, since active
movies receive cycles from QuickTime for Windows' scheduler and are a drag on the system unless
ready for play. You should therefore use normally 0 instead of newMovieActive when calling
NewMovieFromFile, and subsequently SetMovieActive once you are ready to play the movie.

4. The Movie Controller
As noted above, the user interface to a QuickTime for Windows movie is the Movie Controller. Any movie
played in a Windows application must be associated with one. Normally, a movie controller appears as a
bar-shaped collection of controls attached to the bottom edge of a movie. Each of the individual
elements in a movie controller dictates a specific action for a movie:

Figure 1. The Movie Controller

Under certain circumstances, some movie controller elements may not be present. For example, your
application might need to restrict the operation of a controller by not displaying the step buttons. Or, the
user could use the grow box to shrink it to the point where the controller itself must hide some of its
elements, based on the available space it has to work with. A movie controller instance is created and
later freed with the routines NewMovieController and DisposeMovieController:
RECT rcMovie;
Movie mMovie;
MovieController mcController;
·
·

mcController = NewMovieController (mMovie, &rcMovie, mcTopLeftMovie,
 hwndParent);
·
·

DisposeMovieController (mcController);
In Windows terms, a movie and its associated controller have a common parent window, generally the
application in whose client area they both appear. When adding movie controllers to your applications,
you can think of them as custom controls that are subject to the same conventions and programmatic
considerations as standard Windows controls.

You should note that while destroying a window that contains a movie controller causes
DisposeMovieController to be called internally, this is simply a safety feature. You should dispose your
movie controllers explicitly as a matter of course.

Although the Movie Controller is clearly designed to accept mouse input, it has a keyboard interface as
well. The following table applies to any movie controller with an enabled keyboard interface:

Key Action
F1 Brings up the Help subsystem (not part this of interface per se--

actually the responsibility of the application)

Return/Space Toggles Play/Pause state

Right Arrow Step forward one frame

Left Arrow Step backward one frame

Up Arrow Increase volume (when sound is enabled)

Down Arrow Decrease volume (when sound is enabled)

Home Go to start of movie

End Go to end of movie

Ctrl + Home Go back to next interesting time*

Ctrl + End Go forward to next interesting time*

Ctrl + Right Arrow Play forward

Ctrl + Left Arrow Play backward

Shift + (Return or Space) Plays and selects while playing, until shift is released

Shift + Right Arrow Extends selection criteria through the next frame

Shift + Left Arrow Extends selection criteria through the previous frame

Shift + Home Go to start of movie, extending selection back to start

Shift + End Go to end of movie, extending selection to end

Ctrl + Shift + Home Go back to next interesting time, extending selection*

Ctrl + Shift + End Go forward to next interesting time, extending selection*

*Interesting times are normally the start and end points of movies and selections (if any).

The focus of this manual will be the Movie Controller. The API is rich enough, however, to allow movies to
be handled in a wide variety ways to make your QuickTime for Windows programs robust and interesting
to use.

5. Initialization and Termination of QuickTime for Windows Programs
Initializing your applications to play movies is essentially a three-step process. First, links to QuickTime
for Windows must be established. Second, you have to allocate QuickTime for Windows memory for your
application. Finally, you must add a routine to your application's main window procedure.
OSErr oserrResult;
·
·

if ((oserrResult = QTInitialize (NULL)) != QT_OK)
 {
 /* Take appropriate action, e.g. a message box saying movies won't */
 /* play but the program will continue to run. */
 }
if (EnterMovies () != noErr)
 {
 /* Take appropriate action, e.g. a message box saying movies won't */
 /* play but the program will continue to run. */
 }
Establishing links to QuickTime for Windows is accomplished by calling the routine QTInitialize. Normally,
this is done automatically when the first QuickTime for Windows call is executed, but it is good style to call
it yourself. This function takes one parameter, the address of a variable which is filled with QuickTime for
Windows version data that might be useful if your application depends on it. If no error condition is
returned, you must call EnterMovies to allocate QuickTime for Windows memory for your application. If
either QTInitialize or EnterMovies returns an error, such as incorrect Windows version or sub-386 CPU,
your application will run normally but all subsequent movie-related calls will be ignored by QuickTime for
Windows.

It is only necessary to call QTInitialize once in each of your applications. If a particular application
employs DLLs that make QuickTime for Windows API calls, each DLL can initialize itself by calling
QTInitialize explicitly. This is recommended as good QuickTime for Windows style and can be done in
LibMain:

int FAR PASCAL LibMain (HINSTANCE hInst, WORD wDataSeg,
 WORD wHeapSize, LPSTR lpszCmdLine)
 {
 OSErr oserrResult;
 ·
 ·
 if ((oserrResult = QTInitialize (NULL)) != QT_OK)
 {
 /* Take appropriate action, e.g. a message box saying movies */
 /* won't play but the program will continue to run. */
 }
 ·
 ·
 return 1;
 }
Calling EnterMovies is necessary to play movies (your program might display just QuickTime for Windows

pictures, in which case the only initialization required is QTInitialize). EnterMovies only needs to be called
once by your program (or its DLLs) to initialize it for playing movies--subsequent calls to EnterMovies are
ignored by QuickTime for Windows.

The final piece of code required to make movies run is MCIsPlayerMessage, a function that must be
placed in the application's window procedure. For each movie controller that your program creates, there
must be a separate call to this routine in the movie controller's parent window procedure.

MCIsPlayerMessage processes all messages coming into the window procedure, but only messages
directed to its associated controller receive attention. Movies are started and stopped, their states and
attributes changes, etc., based on messages being routed to their controllers via this routine.
LONG FAR PASCAL WndProc (HWND hWnd, UINT uiMessage, WPARAM wParam,
 LPARAM lParam)
 {
 if (MCIsPlayerMessage (mcController, hWnd, uiMessage, wParam,
 lParam))
 return 0;
 switch (uiMessage)
 {
 /* cases */
 }
 return DefWindowProc (hWnd, uiMessage, wParam, lParam);
 }
Now that we have established the paradigm for what keeps movies running, we can make an exception to
it. You don't always have to use MCIsPlayerMessage, especially if your program functions in an unusual
way. There are essentially two QuickTime for Windows API calls that handle movie playing in this case:
MCIdle and MCKey. You can refer to the information on these routines to see how they work. If your
program can accommodate MCIsPlayerMessage, however, it is highly recommended that you code it that
way.

At this point, your application as a whole is considered initialized under QuickTime for Windows, even
though no movies or movie controllers have yet been instantiated.

Figure 2. Initialization and Termination

Graceful termination of QuickTime for Windows programs that play movies is almost a mirror image of
initialization. At some point in your program's termination activity, the routines that deallocate QuickTime
for Windows memory and sever links to the QuickTime for Windows libraries must be called.
·
·

// Deallocate QuickTime for Windows memory
 ExitMovies ();
// Sever links to QuickTime for Windows
 QTTerminate ();
Although QTTerminate is called automatically when your program or DLL terminates, it is still good style
to issue the call explicitly. In some cases, you may want to call it way before the normal end of your
application (e.g., when system memory is at a premium and your program is finished playing movies).

If your program uses DLLs with QuickTime for Windows routines, each DLL can call QTTerminate. This is
the recommended approach and can be done in the WEP function:

int FAR PASCAL WEP (int nParam)
 {
 ·
 ·
// Sever links to QuickTime for Windows
 QTTerminate ();
 return 1;
 }
QuickTime for Windows programs that do not call EnterMovies (e.g. those that display only individual
QuickTime for Windows pictures) do not have to call ExitMovies. Like EnterMovies, you only need to call
ExitMovies once during the life of your program.

6. Associating Movies with Movie Controllers
As noted earlier, a movie must be associated with a controller before it can be played. Several routines in
the QuickTime for Windows API perform this operation. For an initial association, NewMovieController is
commonly used, as we saw earlier.

For existing controllers, a good choice is MCNewAttachedController. You need to supply parameters for
the existing movie and movie controller objects, the window handle of the parent application and the
upper left corner of the movie rectangle.
Movie mMovie;
MovieController mcController;
POINT ptUpperLeft;
·
·

MCNewAttachedController (mcController, mMovie, hWnd, ptUpperLeft);
MCSetMovie takes the same parameters and lets you set the movie object to NULL (second parameter) if
you want to specifically disassociate the controller from the movie.
Movie mMovie;
MovieController mcController;
POINT ptUpperLeft;
·
·

MCSetMovie (mcController, mMovie, hWnd, ptUpperLeft);
When a controller is associated with a movie, the movie object reference is recorded in the controller's
data structure. A movie controller can be associated with many movies during its existence, but only one
at a time (see figure 4, below). Movie data structures contain no elements which link them with movie
controllers.

Once a movie is associated with a controller, it starts playing immediately (assuming it has a non-zero
play rate, which is normally the case). To make a movie paused when first visible and associated with a
new controller, you can use MCDoAction with an action of mcActionPlay and a play rate of 0. It is good
style to do this as soon as possible after performing the association.
Movie mMovie;
MovieController mcController;
RECT rcMovie;
·
·

mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);
MCDoAction (mcController, mcActionPlay, 0);
If you want to play n cases of the same movie simultaneously, you have to open the file n times to get n
unique movie objects, then associate n controllers.

Movie controllers remain associated with movies regardless of their states. If a controller is made invisible
or inactive, for instance, it stays associated with its movie. Conversely, movies continue to play even if the
states of their associated controllers are changed while they are playing. If either one of an associated

pair is destroyed, the other is not affected.

Association implies nothing about the proximity of movies and their controllers on the screen. It is simply
the means by which any movie can be plugged in to any controller and played.

7. Playing Movies through a Movie Controller
A movie associated with a controller is ready for playing (if the movie is active). While the basic apparatus
for this activity appears simple and straightforward, there are many subtleties in the relationship of the
movie controller to the movie. In one sense, the Movie Controller is simply a human interface. In another,
it is the mechanism through which large amounts movie data are focused and made meaningful to the
user.

Figure 3. Relationship of Movie Controller to Movie Data

Individual elements of the controller calibrate this mechanism by determining movie sound volume, movie
start point, movie display size, etc. Most of these elements change their appearance depending on the
values they represent. One element, the volume fader, does not appear at all until specifically called up.

An important distinction needs to be made here: The visual representation of a movie is the sequence of
images which flow through a rectangular area on your screen, even though the movie is actually the
chunk of movie data sitting in memory. It is the Movie Controller, acting as a movie projector, that is the
connection between the movie data and its presentation (i.e. it tells the movie to start and stop playing but
also specifies the attributes of the area in which the movie will appear).

A movie is started by the function MCDoAction with the mcActionPlay action parameter and an
appropriate play rate. This can happen internally when a movie controller's play button is clicked, or
overtly at any appropriate place in your program.
Movie mMovie;
MovieController mcController;
LFIXED lfxRate;
·
·

lfxRate = GetMoviePreferredRate (mMovie);
MCDoAction (mcController, mcActionPlay, lfxRate);
As a movie plays, a synchronized stream of data in the form of still image frames is sent to the specified
movie display area according to the settings held by the movie controller. Similarly, blocks of movie sound
data are sent to your system's sound driver after being synchronized with the visual data.

Figure 4. Movie Sound Data Handling

8. Attached and Detached Movie Controllers
Until now, we have only been concerned with one type of movie controller--the attached variety. A
controller's underlying autonomy, however, is demonstrated by the fact that it can be visually detached
from a movie and still play it. Detached controllers can be repositioned anywhere on the screen and still
remain associated with their movies, just as if they were still physically attached. They may be disabled,
hidden and resized in their detached state as well.

Detachment is a two-step process if you want the controller visually separated from the movie. The most
commonly used routines are MCSetControllerAttached with its last parameter set FALSE (resets the
attachment flags) and MCPositionController (specifies new coordinates):
MovieController mcController;
RECT rcMovie, rcController;
·
·

MCSetControllerAttached (mcController, FALSE);
MCPositionController (mcController, &rcMovie, &rcController, 0L);
Once detached, a movie controller can be easily re-attached via another call to the function
MCSetControllerAttached, this time with TRUE as the last parameter. The controller will move back to its
normal attached position beneath the movie it controls.

You can query the attachment state of a controller using MCIsControllerAttached and also resize it
independently from its movie after it has been detached. A detached controller cannot resize its
associated movie.

Note: A detached controller cannot be in a different window than that of its movie.

Although attached movie controllers are the most straightforward way to direct the operation of your
movies, it is easy to conceive of interesting ways to use detached controllers. For instance, they could
have specific meanings or implications in a customized user interface, or they could control movies which
have been built into other graphical objects without getting in the way. Detachment can be viewed as
simply an attribute of an associated movie/movie controller pair.

9. Active and Inactive Movie Controllers
Instantiated movie controllers exist in one of two states as far as QuickTime for Windows is concerned:
active or inactive. When a controller is created, it is set to the active state by default. At any point in the
program, it may be set to the inactive state by calling MCActivate with its last parameter set to FALSE.
Calling the function with TRUE reactivates the movie controller.

MovieController mcController;
·
·

MCActivate (mcController, hWndParent, FALSE);
Generally, movie controllers behave very much like standard Windows controls. An inactive movie
controller is especially analogous to a disabled Windows control in that it does not respond to mouse
clicks. Additionally, all of its elements are grayed, the slider appears as an outline and the belt is hidden.
Keyboard input is enabled/disabled separately.

QuickTime for Windows allows you to set the active or inactive state for as many movie controllers as you
wish. If one of your applications requires that only a single controller have active status at any given time,
you will have to devise your own scheme for managing these types of situations.

Both attached and detached movie controllers can be made inactive. Doing so has no effect on the movie
with which either type is associated, except that the movie cannot be affected by the controller user
interface until it is reactivated.

If a movie is running and its controller is inactive, you either have to call a function like MCDoAction with
appropriate parameters or reactivate the controller to allow the user to stop the movie. There is no
QuickTime for Windows function to specifically query the active state of a movie controller.

The ability to alter the state of a movie controller dynamically could be advantageous under a number of
scenarios. For instance, you might have a movie that your application needs to play uninterrupted from
beginning to end. In this instance, you would disable the controller when the movie was started and re-
enable it when the movie was over.

Another example is the case mentioned earlier where you want only one of many movie controllers active
at a time, so that keyboard input can be directed properly. As your QuickTime for Windows applications
increase in complexity, this level of control will prove valuable.

10. Movie Size and Position
Bounds Rectangles
NewMovieController
MCSetControllerBoundsRect
MCPositionController
MCSetControllerAttached
MCNewAttachedController
MCSetMovie
MCGetControllerBoundsRect
GetMovieBox

Bounds Rectangles
The key to sizing and positioning movies and movie controllers is the controller's bounds rectangle. If the
movie controller is attached, this is the area encompassed by the controller plus the movie rectangle.
When a movie controller is detached, its dimensions alone determine the bounds rectangle. Rectangles
specified by routines which move or create movie controllers become the bounds rectangles for those
controllers. Depending on the particular function (and possibly its flags), the resulting bounds rectangle
treats its contents in different ways. In some cases, the movie is scaled within the limits of the bounds
rectangle. In others, the movie is resized to completely fill its assigned portion of the rectangle. After any
call that resizes or repositions the bounds rectangle is processed, QuickTime for Windows calls
MCDoAction with mcActionControllerSizeChanged. If your program has a filter, you can make it handle
this action (see the section on filters for further information).

NewMovieController
This call creates a new attached controller in the bounds rectangle you provide. The movie and controller
are positioned in the rectangle according to the creation flags specified. The following example shows
how a new movie controller is created with a bounds rectangle matching the natural dimensions of a
movie plus the controller, then how the dimensions of the bounds rectangle are retrieved so that the
movie/movie controller pair can be exactly encompassed by the parent window:
MovieController mcController;
Movie mMovie;
RECT rcMovie;
·
·

// Get natural dimensions of movie
 GetMovieBox (mMovie, &rcMovie);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
// Instantiate the controller
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);
// Get the new bounds rectangle
 MCGetControllerBoundsRect (mcController, &rcMovie);
 AdjustWindowRect (&rcMovie, WS_CAPTION | WS_OVERLAPPED, FALSE);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
 SetWindowPos (hWnd, 0, 0, 0,
 rcMovie.right, rcMovie.bottom, SWP_NOMOVE | SWP_NOZORDER);
 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

MCSetControllerBoundsRect
For detached movie controllers, MCSetControllerBoundsRect repositions and resizes the controller. For
attached controllers, it repositions and resizes both the controller and the movie.

MCPositionController
This routine repositions the movie and movie controller for both attached and detached controllers:

Detached Controllers: Calling MCPositionController for a detached controller requires specifying two
rectangles, one for the movie and one for the controller. The controller is always centered vertically in its
rectangle. The function returns controllerBoundsNotExact if this rectangle is too big. The movie is
repositioned and resized depending on the flags you provide.

Attached Controllers: Calling MCPositionController on an attached controller requires specifying only
one rectangle for both the movie and the controller (the second rectangle is ignored and should be coded
as NULL). The way the rectangle is used depends on the flags you provide.

MCSetControllerAttached
As discussed previously, MCSetControllerAttached attaches or detaches a movie controller. If the
controller is made detached, only a logical operation takes place. It is not physically moved until a
subsequent MCPositionController is issued. If the movie controller is made attached, it is moved
underneath the movie.

MCNewAttachedController
MCNewAttachedController takes an existing movie controller, associates a movie with it and attaches the
controller to the movie. The controller is made visible if it was not already. If the controller is detached
when the call is issued, it is first attached. The controller bounds rectangle is then offset such that its top
left corner is aligned with the point specified in the call.

MCSetMovie
MCSetMovie takes an existing controller and associates a new movie with it. The controller bounds
rectangle is then offset such that its top left corner is aligned with the point specified in the call.

MCGetControllerBoundsRect
The function for retrieving the bounds rectangle is MCGetControllerBoundsRect, which fills a Windows
RECT structure with the desired coordinates:

RECT rcBounds;
MovieController mcController;
·
·

MCGetControllerBoundsRect (mcController, &rcBounds);

GetMovieBox
You can always use GetMovieBox to obtain the coordinates of the movie only:
RECT rcMovie;
Movie mMovie;
·
·

GetMovieBox (mMovie, &rcMovie);
If no video information is available (see GetVideoInfo), the rectangle specified to receive the coordinates
is made empty.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume client device coordinates.

11. Movie Controller Attributes
Aside from features like attachment, activation state, size and position, movie controllers have other
important attributes which can be manipulated by an application. Some of these attributes are stored in
data structures which you can access as flags arranged in bit fields. Others are retrieved or set
individually.

Figure 5. Movie Controller Attributes

If a movie controller needs to be hidden, for example, the easiest way to do it is to call the routine
MCSetVisible (using FALSE makes the controller invisible):

BOOL bVisible;
MovieController mcController;
·
·

MCSetVisible (mcController, bVisible);
Invisible movie controllers may be attached, detached, active or inactive. You just can't see them. It is
possible, however, to control a movie if its controller is not visible. For instance, you can stop or start a
movie by single- or double-clicking (respectively) directly on it.

Also, you can use a movie controller's keyboard interface (if enabled) to stop, start or otherwise
manipulate a movie. Finally, you can control a movie programatically using appropriate routines from the
QuickTime for Windows API.

To query the visibility state of a movie controller, you can use the corresponding routine MCGetVisible.
Setting visibility might be useful in applications handling multiple movies, special case movies and overall
application aesthetics, just as you would detachment or activation.

The states of the Movie Controller's individual control elements are also considered attributes. To hide the
speaker button or the left and right step buttons, you can use MCDoAction:
MovieController mcController;
·
·

MCDoAction (mcController, mcActionSetFlags,
 mcFlagSuppressStepButtons);
MCDoAction (mcController, mcActionSetFlags,
 mcFlagSuppressSpeakerButton);
To hide the grow box, you have to fill a Windows RECT structure with zeros, then pass its address to
MCDoAction to use in setting the grow box bounds:
MovieController mcController;
RECT rcGrowBoxRect;
·
·

SetRectEmpty (&rcGrowBoxRect);
MCDoAction (mcController, mcActionSetGrowBoxBounds, &rcGrowBoxRect);
Enabling the keyboard interface for a movie controller is also done with MCDoAction, as is querying the
state of a controller's keyboard interface:
MovieController mcController;
BOOL bActive;
·
·

MCDoAction (mcController, mcActionSetKeysEnabled, TRUE);
·
·

MCDoAction (mcController, mcActionGetKeysEnabled, &bActive);
If a movie controller's keyboard interface is enabled, the controller will accept keyboard input even if it has
been set to the inactive state. Multiple controllers will receive the same keystrokes if their keyboard
interfaces are enabled.

If you need to get more low-level information about a movie controller, the function MCGetControllerInfo is
available. This call retrieves a long integer with bit flags denoting controller attributes such as whether the
movie is playing, looping, looping back and forth, if the movie has sound, and so forth.
MovieController mcController;
LONG lMCInfoFlags;
·
·

MCGetControllerInfo (mcController, &lMCInfoFlags);
if (lMCInfoFlags & mcInfoHasSound)
 {
 ·
 ·
 }

12. Badges
A badge is a visual element displayed on the face of a movie to distinguish it from a static graphic when
its movie controller is not visible. To be able to display a badge automatically, a movie controller must be
created with the mcWithBadge creation flag.

Three conditions have to be met before a badge can be displayed automatically. First, the movie cannot
be playing. Second, the badge flag must have been turned on when the movie controller was created (or
with mcActionSetUseBadge). Third, your application must call MCSetVisible with FALSE as the second
parameter, to make the movie controller invisible.

If the first two conditions are satisfied, calling MCSetVisible with FALSE (or creating the controller with
mcNotVisible) hides the controller and causes the badge to be displayed.

Movie mMovie;
MovieController mcController;
RECT rcMovie;
·
·

mcController = NewMovieController (mMovie, &rcMovie, mcWithBadge, hWnd);
If a movie controller is displaying a badge, clicking the badge hides it and restores the movie controller (if
the mcWithBadge flag is on).

A good point to remember is that badge visibility is not an attribute of a movie controller, while the ability to display
a badge is. Although you can specify that ability when the controller is created, you cannot use
MCGetControllerInfo to query it.

If your application needs more control over displaying badges, you can use the function MCDrawBadge.
This routine lets you display a badge at any time, regardless of whether mcWithBadge is on or the movie
is playing. Calling the function does not affect the state of the mcWithBadge flag.

When you call MCDrawBadge, you must set the second parameter to NULL. The third parameter
receives the address of a handle to a badge region, which your program can use later at its discretion.
MovieController mcController;
HRGN hrgnBadge;
·
·

MCDrawBadge (mcController, NULL, &hrgnBadge);
Obviously, under certain circumstances you can create a situation where both a badge and a movie
controller are visible at once, which is not good QuickTime for Windows style.

13. Actions and Filters
The function MCDoAction is one of the most versatile in the QuickTime for Windows API. Although it is
available to you for handling specific, low-level tasks, it is also used by various high-level functions in
QuickTime for Windows. Along with a movie controller object, it takes parameters for the action desired
and additional data specific to that action, often the address of a boolean value denoting whether the
action item should be toggled on or off:
MovieController mcController;
BOOL bFlag;
·
·

MCDoAction (mcController, mcActionActivate, &bFlag);
As we have seen, MCDoAction can be used to do things like starting a movie and setting a movie's
activation state. Many other actions can be effected by this routine, however, and it is worth exploring
them all to get a sense of the power and flexibility that MCDoAction provides.

Closely related to MCDoAction is the function MCSetActionFilter, which gives you a way to intercept the
MCDoAction call. The usefulness of this routine is hard to underestimate, since QuickTime for Windows
itself uses MCDoAction so extensively--especially in processing user interaction.

For example, almost anywhere you click on the movie controller generates a MCDoAction call internally.
By creating carefully-designed filter functions, you can customize the behavior of your movie controllers to
almost any level you wish.

MCSetActionFilter inserts the address of a user-defined filter function in the movie controller's data
structure. This filter function is called automatically when your program calls MCDoAction.
MCSetActionFilter's last parameter is a LONG which can be used to pass additional information to the filter
function (e.g. the address of a structure containing data necessary for complex processing).
BOOL CALLBACK __export MyFilter (MovieController, UINT, LONG);
MovieController mcController;
struct {...} *pData;
·
·

MCSetActionFilter (mcController, MyFilter, (LONG) pData);
If you compile your program using Borland smart callbacks or Microsoft's -GEs compiler option, or your
filter function is in a dynamic link library, you do not need to use MakeProcInstance on your filter
address before calling MCSetActionFilter.

If a filter function is used, it gets a chance to process the action item before the movie controller. Its return
value must be a boolean: TRUE indicates that the controller doesn't have to handle it. FALSE tells the
controller to complete any appropriate processing of the action item.

To remove a filter, you must call MCSetActionFilter with the filter function address set to NULL. Since a
filter is essentially a callback function, it must be declared as CALLBACK and listed in the EXPORTS
section of your .DEF file.

Figure 6. Using an Action Filter Function

You can view using an action filter as a kind of built-in subclassing. The following code fragment shows
how you might set up your switch and case statements to handle a limited number of actions:
BOOL CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpParam)
 {
 switch (uAction)
 {
 case mcActionDraw:
 ·
 ·
 return TRUE;
 case mcActionPlay:
 ·
 ·
 return TRUE;

case mcActionKey:
 ·
 ·
 return TRUE;
 case mcActionBadgeClick:
 ·
 ·
 return TRUE;
 default:
 return FALSE;

 }
 }

14. Pictures
Like a movie, a QuickTime for Windows picture is a collection of data that can be rendered visually. Unlike
a movie, a picture consists of a single complete image with no time coordinate system. This complete
image is actually composed of one or more pieces, often arranged as bands within the area of the
complete image.

Pictures are stored in picture files, from which they may be extracted using various QuickTime for
Windows API routines and then displayed by your application. All of the pieces that comprise a complete
image as described above are generally stored in the same picture file. Once extracted, a QuickTime for
Windows picture is handled conceptually as a picture object, in a manner similar to a movie object.

QuickTime for Windows pictures are stored in the Macintosh PICT format (for a complete discussion of
this format, refer to Inside Mac Volumes V and VI) or Macintosh JFIF format (see the document JPEG File
Interchange Format, Version 1.1, available from C-Cube Microsystems, San Jose, CA 408-944-6335).
Picture files and picture objects are manipulated by QuickTime for Windows API calls. For example, to
extract a picture object:
PicHandle phPicture;
PicFile pfPicture;
·
·

if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ) != noErr)
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
·
·

DisposePicture (phPicture);
As noted earlier, your QuickTime for Windows applications do not have to call EnterMovies if they are
only going to deal with picture objects. QTInitialize is required, however, along with QTTerminate. Since
picture objects occupy memory, they must be disposed of properly with DisposePicture (or its equivalent,
KillPicture) when they are no longer needed. As with movies, a picture file should be closed as soon as
possible once its picture is extracted.

The Macintosh PICT file format defines numerous opcodes, in much the same way as, for example, the
TIFF format. Under QuickTime for Windows, however, only a subset of these opcodes are processed:

· 0x0090 - BitsRect

· 0x0091 - BitsRgn

· 0x0098 - PackBitsRect

· 0x0099 - PackBitsRgn

· 0x009A - DirectBitsRect (denotes a direct image)

· 0x009B - DirectBitsRgn (denotes a direct image)

· 0x8200 - Compressed QuickTime image

· 0x8201 - Uncompressed QuickTime image

· 0x0011 - Version

To draw the image contained in a picture object, you can use DrawPicture:
PicHandle phPicture;
HDC hdc;
RECT rcPicture;
·
·

DrawPicture (hdc, phPicture, &rcPicture, NULL);
Certain pictures may be stored with additional data defining a custom palette. You can extract this palette
with GetPicturePalette and then use it in your Windows application to obtain a more faithful rendering of a
picture:
PicHandle phPicture;
HDC hdc;
HPALETTE hpalPicture
RECT rcPicture;
·
·

// Standard Windows call to see if driver can handle a palette
 if (GetDeviceCaps (hdc, RASTERCAPS) || RC_PALETTE)
 {
 hpalPicture = GetPicturePalette (phPicture);
 SelectPalette (hdc, hpalPicture,0);
 RealizePalette (hdc);
 }
 ·
 ·
 DrawPicture (hdc, phPicture, &rcPicture, NULL);
Picture files cannot be created or edited, but the images in them may be converted to formats for editing
and saving under Windows. For example, the following code puts a device independent bitmap, derived
from a QuickTime for Windows picture, on the Windows clipboard:
PicFile pfPicture
PicHandle phPicture;
DIBHandle hdPicture;
·
·

// Extract a picture and convert it to Windows Device Independent
// Bitmap (DIB)
 if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ) != noErr)
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
 ·

 ·
 hdPicture = PictureToDIB (phPicture);
 DisposePicture (phPicture);
// Put the DIB in the clipboard
 OpenClipboard (hWnd);
 EmptyClipboard ();
 SetClipboardData (cf_DIB, hdPicture);
 CloseClipboard ();
Some QuickTime for Windows API calls allow you to operate directly on a picture file without first
extracting a picture object. For instance, DrawPictureFile draws the image contained in a file:
PicFile pfPicture;
RECT rcPict;
HDC hdc;
·
·
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
DrawPictureFile (hdc, pfPicture, &rcPict, NULL);
ClosePictureFile (pfPicture);
You can use GetPictureInfo to extract information about a picture object. Similarly, you can use
GetPictureFileInfo to extract data directly from a picture file.

15. Getting Pictures from Movies
Movie data can be viewed as a collection of compressed still images. A routine that allows you to retrieve
such individual images from a movie is GetMoviePict, which takes a specified movie time as a parameter.

MCGetCurrentTime retrieves the movie's current time, i.e. position on the movie's time axis. This function
can be used whether a movie is playing or not.
Movie mMovie;
MovieController mcController;
PicHandle phMyPicHandle;
TimeValue tvTime;
TimeScale tsTime;
·
·

tvTime = MCGetCurrentTime (mcController, &tsTime);
phMyPicHandle = GetMoviePict (mMovie, tvTime);
The picture object obtained from GetMoviePict points to an image in a format unusable by Windows
directly. If you want to convert it to a Windows format suitable for use by other Windows applications, your
can do so using PictureToDIB. This routine returns a handle to a device-independent bitmap, which can
then be used to put the picture in the Windows clipboard or send it to your printer.

Figure 7. Retrieving a Picture from a Movie

The alternative to converting an image retrieved by GetMoviePict is to display it directly. Calling the

function DrawPicture puts the picture on the screen at coordinates you specify. You'll need to supply a
device context, the picture object reference and a display rectangle. Whatever you decide to do with a
movie picture object you retrieve, you must free it when you are done with it.
Movie mMovie;
MovieController mcController;
PicHandle phMyPicHandle;
TimeValue tvTime;
·
·

tvTime = MCGetCurrentTime (mcController, /* Time scale address */);
phMyPicHandle = GetMoviePict (mMovie, tvTime);
DrawPicture (hdcMyDevCon, phMyPicHandle, &rcPicture, NULL);
·
·

DisposePicture (phMyPicHandle);
As with picture objects extracted from picture files, pictures extracted from movies may also contain
custom palette information. You can use GetPicturePalette to retrieve this data and set the Windows
palette to better render these individual movie images.

A movie poster is a frame in a movie selected when the movie was created to represent the movie when it
is not loaded or not being played. You have access to this picture with GetMoviePosterPict, which returns
an image object created from the frame designated as the movie's poster. One interesting way to use
movie posters might be in an open movie dialog box. When the name of the movie is highlighted in the list
box, its poster would be displayed next to it.
case LN_SELECT:
 ·
 ·
 OpenMovieFile (/* file name highlighted */, ...);
 NewMovieFromFile (...);
 phMyPicHandle = GetMoviePosterPict (/*NewMovieFromFile object */);
 hDIB = PictureToDIB (phMyPicHandle);
 /* Display DIB in dialog box using bitmap object. */
 break;

16. Getting User Data from Movies
User data is typically inserted into a movie by its creator to identify special characteristics, production
credits, and so forth. Any movie can contain a user data list, which is available for use by your application.
A user data list comprises all the user data for a movie, and may contain one or more user data items.
Each user data item has several attributes:

· The type identifier - denotes the specific type of the item, e.g. date, copyright, etc.

· The index value - a unique, one-based number denoting list position among like
types

· The data itself - generally text, possibly other data

To get a handle to a movie's user data, you call GetMovieUserData:
Movie mMovie;
UserData udData;
·
·

udData = GetMovieUserData (mMovie);
With this handle, you can parse the data. Each of the other functions which handle user data has a
specific purpose in this regard:

GetNextUserDataType takes the user data handle and desired user data type as parameters. If the type
parameter is 0, the routine returns the first user type in the user data list. For subsequent calls (for
example, in a loop to get all the user data), use the previous value returned by this function. The current
format of the user data type identifier in a QuickTime movie is four-character constant, which is supported
in the Macintosh environment, but not directly under Windows. You can create the equivalent, however,
with the macro QTFOURCC.
UserData udData;
OSType osType;
·
·

osType = QTFOURCC('Ó','d','a','y');
osType = GetNextUserDataType (udData, osType);
Below are some common user data types (note they are case sensitive). By convention, text user data
types start with a "Ó" symbol. Remember to use the QTFOURCC macro.

Ócpy Copyright statement

Óday Date the movie's content was created

Ódir Name of movie's director

Óed1 to Óed9 Edit dates and descriptions

Ófmt Indication of movie format (computer-generated, digitized, etc.)

Óinf Information about the movie

Óprd Name of movie's producer

Óprd Names of performers

Óreq Special hardware and software requirements

Ósrc Credits for providers of movie source content

Ówrt Name of movie's writer

LOOP Denotes that the movie expects to be played in loop mode. If the value of this user data type is
empty or 0, normal loop mode is indicated. A value of 1 denotes palindrome loop mode.

WLOC Denotes that the last known position of the movie on the desktop is available, represented by two
16-bit integers contained in its associated value. Because movies are created on the Mac, this may not
translate well to the Windows desktop.

CountUserDataType returns the number of items of a given type in a user data list. You pass it the handle
to the user data list and the desired type:
UserData udData;
LONG lItemCount;
·
·

lItemCount = CountUserDataType (udData, QTFOURCC('Ó','d','a','y'));
GetUserData retrieves a specified user data item. You need to pass it the handle of a global memory
block you have allocated, in which it will place the requested item. When you allocate the memory block,
you should make it of an arbitrary size, since QuickTime for Windows will reallocate memory internally
based on your handle if the data item requested is too big. You must free this handle explicitly when you
are done with it.

In addition to the memory handle, you must also pass GetUserData the index value of the data item you
want, and the address of a LONG which it fills with the size of the data item requested (in bytes).

UserData udData;
HGLOBAL ghMem;
LONG lIndex, lByteCount;
struct {...} *pData;
·
·

// Note arbitrary size of allocation request
if ((ghMem = GlobalAlloc (GMEM_MOVEABLE, 128)) == NULL);
 {
 /* Inform user of failure. */
 return;
 }
GetUserData (udData, &ghMem, QTFOURCC('t','e','s','t'), lIndex,
 &lByteCount);
pData = GlobalLock (ghMem);
·
·

/* Do something with user data item. */
·
·

GlobalUnlock (ghMem);

GlobalFree (ghMem);
When you specify a type of user data in this routine, you must know its format in advance. One way to
handle this is to have GlobalLock return a pointer to a structure type you declare which maps onto the
structure of the user data type you are retrieving.

GetUserDataText retrieves the text associated with a particular user data text item. Its parameters are the
same as for GetUserData, with one exception: the region code. A region code is a value representing a
particular language or country.
UserData udData;
LONG lIndex, lByteCount;
HGLOBAL ghMem;
LPSTR lpstrText;
·
·

ghMem = GlobalAlloc (GMEM_MOVEABLE, 128); // Note arbitrary size
GetUserDataText (udData, &ghMem, QTFOURCC('@','d','a','y'),
 lIndex, 0, &lByteCount);
lpstrText = (LPSTR) GlobalLock (ghMem);
lpstrText [lByteCount] = '\0';
·
·

/* Do something with text string. */
·
·

GlobalUnlock (ghMem);
GlobalFree (ghMem);
In this example, 0 is the code for US (English).

17. Getting System Data from Movies
In addition to individual picture frames and user data, movies contain a substantial amount of other data
that your QuickTime for Windows programs can make use of, such as preferred play settings, time-based
information and so forth.

Preferred settings are data elements held by a movie that denote optimum performance characteristics.
When a movie is created, the author has the opportunity to encode what he or she feels is the most
suitable volume, play rate, etc., which can later be used to play the movie as the author intended.

Figure 8. Available Movie System and User Data

For example, you can get the preferred volume with GetMoviePreferredVolume, then use the return value
to set the movie volume with a call to MCDoAction with the mcActionSetVolume parameter.

To retrieve the preferred play rate, the call is GetMoviePreferredRate. You can set the movie's play rate
as above using the mcActionPlay action with the returned rate as the additional parameter.

The second category, metric data, is more diverse. You will be the best judge of how to use these
particular routines in your QuickTime for Windows programs. The routine GetMovieDataSize, for instance,
returns (in bytes) the size of a specified movie segment, including sound.

GetMovieTimeScale returns the movie's time scale, which (as we noted earlier) is a specific fraction of a
second. GetMovieDuration returns a movie's duration expressed in terms of its time scale.

You can manipulate a movie's time scale with ConvertTimeScale. The timestamp functions,
GetMovieCreationTime and GetMovieModificationTime, return the values for when the movie was created
and last modified, respectively.

18. Cover Procedures
QuickTime for Windows allows your application to perform custom processing whenever one of your
movies covers a screen region or reveals a region that was previously covered. You perform this
processing in cover procedures. Cover procedures are useful in handling movies with "empty segments,"
i.e. portions of movies intentionally lacking any visual element.

By default, QuickTime for Windows will display the normal background color during an empty segment.
You can use a cover procedure to display other information meaningful to your application.

There are two types of cover procedures: those that are called when your movie covers a screen region,
and those called when it uncovers a screen region, revealing a region that was previously covered. Cover
procedures that are called when your movie covers a screen region are responsible for erasing the
region--you may choose to save the hidden region in a bitmap. Cover procedures that are called when
your movie reveals a hidden region must redisplay the hidden region.

Use SetMovieCoverProcs to set both types of cover procedures. The following example shows how to
establish a cover procedure called when your movie uncovers a screen region.
OSErr CALLBACK __export CoverProc (Movie, HDC, LONG);
·
·

HWND hWnd;
Movie mMovie;
·
·

SetMovieCoverProcs (mMovie, CoverProc, 5879);
·
·

OSErr CALLBACK __export CoverProc (Movie m, HDC hdc, lID)
 {
 RECT rcClip;
 GetClipBox (hdc, &rcClip;
 FillRect (hdc, &rcClip, GetStockObject (WHITE_BRUSH));
 return 0;
 }
Note that the third parameter to SetMovieCoverProcs is an arbitrary constant passed directly to your
routine. You can use this to distinguish invocations when your cover procedure is shared by two or more
movies.

If you compile your program using Borland smart callbacks or Microsoft's -GEs compiler option, or your
filter function is in a dynamic link library, you do not need to use MakeProcInstance on your cover
procedure address before calling SetMovieCoverProcs. Since a cover procedure is essentially a
callback function, it must be declared as CALLBACK and listed in the EXPORTS section of your .DEF file.

19. QuickTime for Windows Error Handling
The QuickTime for Windows API provides two routines for trapping non-Movie Controller function errors:
GetMoviesError and GetMoviesStickyError. Movie Controller functions do not return error conditions.

B. The QuickTime for Windows Environment
1. Hardware Considerations
2. Developing QuickTime for Windows Programs
3. QuickTime for Windows On-line Help

1. Hardware Considerations
The supported environment for QuickTime for Windows is Windows 3.1, either standard or enhanced
mode, running on an i386 or i486 machine. If a program incorporating QuickTime for Windows is run in a
non-supported environment, QTInitialize will fail. If this happens, it is your responsibility not to execute
any further QuickTime for Windows calls. QuickTime for Windows does provide some assistance in this
area by making all of its calls no-ops when QTInitialize fails, but you should take the extra steps to not
even call the functions in a non-QuickTime for Windows environment. Doing so will ensure that your
applications continue to run normally when QuickTime for Windows is integrated, even when QuickTime
for Windows cannot.

2. Developing QuickTime for Windows Programs
To start building QuickTime for Windows programs, you need to make four changes to your development
environment and program source files:

· Include the library file QTW.LIB in the link line of your program's make file

· Add the line #include QTW.H to your program's source file

· Change the stack size to at least 16K in your program's .DEF file

· Check that the QuickTime for Windows installation program has updated the SET LIB, SET
INCLUDE and PATH environment variables in your AUTOEXEC.BAT file to access all of the
QuickTime for Windows development tools.

3. QuickTime for Windows On-line Help
If you have installed QuickTime for Windows from diskettes, all of the help files are in the directory \qtw\
help. They are in the standard .HLP format, accessible with Quick Help. If you have installed from CD-
ROM, you will have the standard .HLP files plus their source code files (with the extension .RTF) and their
corresponding help project files (with the extension .HPJ), also in \qtw\help. Of particular note are the
files for the Movie Controller, which you can integrate with your application's help system.

You can rebuild the compiled help files using the Windows help compiler. For example, to build the Movie
Controller help file, you would invoke:

HC31 MCENU.HPJ

The three-letter "ENU" string in the file name indicates the U.S. English version. To compile help files for
other languages, use the appropriate source files in \qtw\help.

C. QuickTime for Windows Applications
QuickTime for Windows provides two sample applications for viewing QuickTime movies and pictures:
Movie Player and Picture Viewer. These programs use the Microsoft standard Multiple Document
Interface (MDI) to view multiple movies or pictures, respectively. Complete source code is provided for
each application for use as a learning tool. When running either program, you will find extensive on-line
help available through the Help menu item or the F1 function key.

Related Topics:
1. The Movie Player
2. The Picture Viewer

1. The Movie Player
This application lets you play one or more movies in its main window. All movies run in standard MDI child
windows. You can resize any of the movies by dragging on their borders, or by using the grow box in the
lower right corner. Individual movie frames can be copied to the clipboard through the Edit menu item,
and information about the movie is available under the Movie menu item. The Movie Player executable is
in the \qtw\bin subdirectory. Its source code is in \qtw\mplayer. You can build PLAYER.EXE with the
make file PLAYER.MAK (in standard NMAKE format), also located in this directory.

Online help files for the Movie Player are provided in two formats: PLAYENU.RTF (rich text format, only if
you installed from CD-ROM) and PLAYENU.HLP (standard compiled help files, usable by the Windows
help subsystem). These help files are in the directory \qtw\help and are currently localized for the U.S.
English language. You can localize them for other languages at your discretion (no other localization is
normally required for QuickTime for Windows programs). Help files for the Movie Controller, MCENU.RTF
and MCENU.HLP, are in the same format and location.

2. The Picture Viewer
This application lets you view one or more pictures in its main window. All pictures are displayed in
standard MDI child windows, which you can resize by dragging on their frame-sizing borders or by using
the grow box in the lower right corner. Individual pictures can be copied to the clipboard through the Edit
menu item, and information about the picture is available under the Image menu item. The Picture Viewer
executable is in the \qtw\bin subdirectory. Its source code is in \qtw\pviewer. You can build
VIEWER.EXE by executing the make file VIEWER.MAK (in standard NMAKE format), also located in this
directory.

Online help files for the Picture Viewer are provided in two formats: VIEWENU.RTF (rich text format, only
if you installed from CD-ROM) and VIEWENU.HLP (standard compiled help files, usable by the Windows
help subsystem). These help files are in the directory \qtw\help and are currently localized for the U.S.
English language. You can localize them for other languages at your discretion (no other localization is
normally required for QuickTime for Windows programs).

D. QuickTime for Windows vs. QuickTime for the
Macintosh

1. Summary
2. The Movie Controller
3. Initialization and Termination Differences
4. Picture Handling Differences
5. Other Differences
6. QuickTime API Calls Supported by QuickTime for Windows

1. Summary
As an experienced QuickTime programmer ready to use the QuickTime for Windows API, you know about
differences between the Windows and Macintosh platforms. You should also be aware of how
QuickTime and QuickTime for Windows themselves differ in implementation.

We noted earlier that QuickTime movies can be created and edited on the Macintosh, while they can be
handled in playback mode only in the current version of QuickTime for Windows. It is also worth re-
emphasizing that the primary focus of the QuickTime for Windows API and related documentation is the
Movie Controller.

Although QuickTime for Windows' API is based as closely as possible on QuickTime's, the platform
differences noted above have necessitated the creation of QuickTime for Windows calls with no
counterpart on the Macintosh side. These are discussed in context in the material that follows. Equally
important is that many of the QuickTime Toolbox routines available to the Macintosh developer are not
exposed in the QuickTime for Windows API, since the focus is on the Movie Controller.

Finally, you should be aware of some additional QuickTime concepts not implemented or supported in this
version of QuickTime for Windows:

· Tracks

· Media

· Components

· User-writable CODECs

2. The Movie Controller
The important ideas to keep in mind regarding the QuickTime for Windows Movie Controller are:

· Playing movies under QuickTime for Windows is possible only with the Movie
Controller, as opposed to under QuickTime, which allows movies to be played
using its Toolbox API.

· You cannot create a custom movie controller component.

· The QuickTime for Windows Movie Controller is functionally identical to the

default movie controller under QuickTime.

· You can simulate the appearance of a QuickTime toolbox application using an invisible
movie controller.

3. Initialization and Termination Differences
QuickTime is an operating system extension on the Macintosh and does not need to be explicitly
initialized. Under QuickTime for Windows, any application that makes calls to the QuickTime for Windows
libraries must first verify that the libraries are available on the system. This is accomplished with the new
QuickTime for Windows-only routine QTInitialize, which establishes links to those libraries if they are
indeed present. The bookend function, QTTerminate, also new to QuickTime for Windows, must be called
before your QuickTime for Windows-enabled program is unloaded.

4. Picture Handling Differences
Since pictures on the Macintosh are also generally handled at the operating system level, there are a
number of new routines to deal with individual QuickTime for Windows images.

ClosePictureFile

DisposePicture

DrawPicture

GetPictureFileInfo

GetPictureFromFile

GetPictureInfo

GetPicturePalette

KillPicture

OpenPictureFile

PictureToDIB

5. Other Differences
The following new routines are included in the QuickTime for Windows API to bridge other platform
differences.

GetSoundInfo

GetVideoInfo

MAKELFIXED (macro)

MAKESFIXED (macro)

MCIsPlayerMessage (formerly MCIsPlayerEvent)
NormalizeRect

QTFOURCC (macro)

6. QuickTime API Calls Supported by QuickTime for Windows
Application Defined Movie Routines
SetMovieCoverProcs

Disabling Movies and Tracks
GetMovieActive

SetMovieActive

Enhancing Movie Playback Performance

PrerollMovie

Error Routines

ClearMoviesStickyError

GetMoviesError

GetMoviesStickyError

Movies and the Event Loop
GetMovieStatus
PtInMovie
UpdateMovie

Generating Pictures from Movies
GetMoviePict
GetMoviePosterPict

Initializing the Movie Toolbox
EnterMovies
ExitMovies

Movie Controller
DisposeMovieController
MCActivate
MCDoAction
MCDraw
MCDrawBadge
MCGetControllerBoundsRect
MCGetControllerInfo
MCGetCurrentTime
MCGetMovie
MCGetVisible
MCIdle
MCIsControllerAttached

MCIsPlayerMessage
MCKey
MCNewAttachedController
MCPositionController
MCSetActionFilter
MCSetControllerAttached
MCSetControllerBoundsRect
MCSetVisible
NewMovieController

Determining Movie Creation and Modification Time
GetMovieCreationTime
GetMovieDataSize
GetMovieModificationTime

Movie Routines
CloseMovieFile

DeleteMovieFile
DisposeMovie
GetMovieBox
NewMovieFromDataFork
NewMovieFromFile
OpenMovieFile
Working with Pictures and Picture Files
DisposePicture
DrawPictureFile

GetPictureFileHeader
KillPicture

Movie Posters and Movie Previews
GetMoviePosterTime

Preferred Movie Settings

GetMoviePreferredRate
GetMoviePreferredVolume

Time Base Routines
AddTime
ConvertTimeScale
SubtractTime

Working with Movie User Data

CountUserDataType
GetMovieUserData
GetNextUserDataType
GetUserData
GetUserDataText

Working with Movie Time
GetMovieActiveSegment
GetMovieDuration
GetMovieTime
GetMovieTimeScale

E. Preparing Macintosh movie and picture files for
QuickTime for Windows
QuickTime movies prepared on the Macintosh to play under Windows need to have two related
characteristics. They must be 1) self-contained, and 2) contained in a single fork file. These
characteristics are set by the Macintosh application that saves the movie. Such an application is the
Movie Converter, which is part of the QuickTime Starter Kit (M1269LL/A) available from Apple Dealers
everywhere.

Macintosh QuickTime pictures may be transferred to a Windows machine directly (e.g., over a network or
with a Mac to PC file transfer program) and viewed without any special preparation.

To use Movie Converter to create a movie file that can be ported to a Windows machine:

 1. Launch Movie Converter

 2. Open the QuickTime movie to be saved.

 3. In the File Menu select "Save As_".

 4.Click the "Make movie self-contained" button. This creates a movie that contains
no references to other files.

 5. Check "Playable on non-Apple computers". This creates a movie file that does not
depend on resources.

 6. Save the file.

The file just created can now be ported to a Windows machine (e.g., over a network or with a Mac to PC
file exchange program) and viewed with any application that supports QuickTime for Windows. More
Macintosh applications are expected to support this saving mode in the near future.

A. Introduction
The series of sample programs presented in this section of the on-line manual is intended as a learning
tool. While they clearly demonstrate the power and flexibility of the QuickTime for Windows API, none of
the programs should be taken out of context or used in production quality applications without careful
consideration. Although the complete source code for each program is listed out in this section, the files
are also in the \qtw\samples directory of your installed QuickTime for Windows environment.

B. WINPLAY1 - Your First QuickTime for Windows
Program

1. Introduction
2. The WINPLAY1 Source Code
3. Building QuickTime for Windows Programs
4. Initializing QuickTime for Windows Programs
5. Loading a Movie
6. Creating a Movie Controller
7. Modifying the Window Procedure
8. Cleaning Up
9. Running WINPLAY1.EXE

1. Introduction
WINPLAY1 serves one purpose: it puts into context the essential steps for initializing, executing and
disposing various QuickTime for Windows API components required to play a movie. Its user interface is
a plain frame window completely filled by a single movie and attached movie controller.

2. The WINPLAY1 Source Code
· WINPLAY1.MAK is the standard make file.

· WINPLAY1.DEF is the module definition file.

· WINPLAY1.C is the C source file.

WINPLAY1.MAK

ALL : WINPLAY1.EXE

WINPLAY1.OBJ : WINPLAY1.C
 cl -c -AS -DSTRICT -G2 -Zpel -W3 -WX -Od winplay1.c

WINPLAY1.EXE : WINPLAY1.OBJ WINPLAY1.DEF
 link /nod /a:16 winplay1, winplay1.exe, nul, qtw libw slibcew, \
 winplay1.def;
 rc winplay1.exe

WINPLAY1.DEF
NAME WINPLAY1
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

WINPLAY1.C

#include <windows.h>
#include <qtw.h>

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);

MovieFile mfMovie;
RECT rcMovie;
Movie mMovie;
MovieController mcController;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName[] = "WinPlay1";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;

// Establish links to QuickTime for Windows
 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;

 }
// Allocate memory required for playing movies
 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }
// Register and create main window
 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = NULL;
 wndclass.lpszClassName = szAppName;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;
 }
 }
 hWnd = CreateWindow (szAppName, szAppName, WS_CAPTION | WS_SYSMENU |
 WS_CLIPCHILDREN | WS_OVERLAPPED, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hInstance, NULL);
 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }
// Instantiate the movie
 if (OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ) != noErr)
 {
 MessageBox (NULL, "OpenMovieFile failure", szAppName, MB_OK);
 return 0;
 }
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
 CloseMovieFile (mfMovie);
// Instantiate the movie controller
 GetMovieBox (mMovie, &rcMovie);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);
// Make the movie paused initially
 MCDoAction (mcController, mcActionPlay, 0);
// Eliminate the grow box
 SetRectEmpty (&rcMovie);
 MCDoAction (mcController, mcActionSetGrowBoxBounds, &rcMovie);
// Make the frame just big enough for the movie
 MCGetControllerBoundsRect (mcController, &rcMovie);
 AdjustWindowRect (&rcMovie, WS_CAPTION | WS_OVERLAPPED, FALSE);
 OffsetRect(&rcMovie, -rcMovie.left, -rcMovie.top);
 SetWindowPos (hWnd, 0, 0, 0,

 rcMovie.right, rcMovie.bottom, SWP_NOMOVE | SWP_NOZORDER);
// Make the movie active
 SetMovieActive (mMovie, TRUE);
// Make the main movie visible
 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);
// Play the movie
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
// Destroy the movie controller
 DisposeMovieController (mcController);
// Destroy the movie
 DisposeMovie (mMovie);
// Cut the connections to QuickTime for Windows
 ExitMovies ();
 QTTerminate ();
// Return to Windows
 return msg.wParam;
 }

long FAR PASCAL __export WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
 {
 PAINTSTRUCT ps;
// Drive the movie controller
 if (MCIsPlayerMessage (mcController, hWnd, message, wParam, lParam))
 return 0;
// Process the windows message
 switch (message)
 {
 case WM_PAINT:
 if (!BeginPaint (hWnd, &ps))
 return 0;
 EndPaint (hWnd, &ps);
 return 0;
 case WM_DESTROY:
 PostQuitMessage (0);
 return 0;
 }
// Return to Windows
 return DefWindowProc (hWnd, message, wParam, lParam);
 }

3. Building QuickTime for Windows Programs
The most significant difference between WINPLAY1.MAK and an otherwise standard make file is in the
link line: a file named QTW.LIB is specified in the library list. In general, the only change necessary for
your existing Windows make files is to make sure QTW.LIB is added to your list of statically-linked
libraries.

WINPLAY1.DEF is provided only to complete the source file set for this tutorial. Module definition files for
your existing Windows programs generally will not have to be modified for QuickTime for Windows.

4. Initializing QuickTime for Windows Programs
The first QuickTime for Windows function in WINPLAY1.C is QTInitialize, which has a void parameter list
and returns one of five possible values:

QTI_OK Success

QT_FAIL_CORRUPTDLL A QuickTime for Windows DLL failed to load

QTI_FAIL_NOEXIST QuickTime for Windows is not installed

QTI_FAIL_286 QuickTime for Windows requires a 386 or better

QTI_FAIL_WIN30 Windows 3.1 or better required

This routine must be called before any other QuickTime for Windows function. Although it is performed
automatically when any such function is executed, you should call it explicitly as a matter of programming
style. Its primary purpose is to bind QuickTime for Windows-enabled applications to QuickTime for
Windows at run time. Normally, a program utilizing DLLs is bound to them at link time; if calls to the DLLs
are not resolved at load time, the program fails to load. The function QTInitialize provides access to
QuickTime for Windows functions after the program has loaded. If QuickTime for Windows is not installed,
the program will fail to play movies but otherwise run normally.

For instance, if you were the developer of an existing word processing program, you might want to add
the ability to play movies in your documents but not cripple the product because it failed to load on a non-
QuickTime for Windows system. QuickTime for Windows will accommodate you on both accounts. In
effect, you can develop a QuickTime for Windows-enabled application without worrying about whether its
DLLs will be present on future host systems.

QTInitialize also provides safety features to prevent a fatal failure if the application is running on a non-
supported platform, or if the application accidentally makes a QuickTime for Windows call when
QuickTime for Windows is not present. In these cases, all QuickTime for Windows calls are no-ops.

In WINPLAY1, a standard Windows message box is displayed if QTInitialize does not return QTI_OK, and
the program exits when the message box is dismissed. If we fell through to the rest of the QuickTime for
Windows functions, each of them would return unsuccessfully and no movie would be displayed. The
program's main window would be created, however, and it would behave normally.

If QTInitialize returns successfully, the program calls EnterMovies to allocate memory required by
QuickTime for Windows (not its movies), including the internal scheduler tables, etc., that will be used to
track movies for this program. EnterMovies has a void parameter list and returns an OSErr. An OSErr is
returned by a number of QuickTime for Windows functions. 0 indicates no error. Various other integer
values denote QuickTime for Windows error conditions which your program may react to as you deem
appropriate. Please see Appendix A for a breakout of these error codes.

WINPLAY1 checks the return and puts up a message box, followed by a program exit, if an error
condition is indicated. An application may call EnterMovies multiple times, but memory will be allocated
only for the first call.

As noted in the overview, QTInitialize and EnterMovies (if your program plays movies) only need to be
called once during the life of your QuickTime for Windows application. Functions which deal with
initializing individual movies, discussed next, need to be executed for each QuickTime for Windows movie
your program incorporates.

5. Loading a Movie
Assuming WINPLAY1 has been successfully initialized for using the QuickTime for Windows libraries, it
can now proceed to ready a specific movie for playing. OpenMovieFile is hardcoded to open the movie
file SAMPLE.MOV, its first parameter. Its second parameter is the address of mfMovie, which will be
passed to NewMovieFromFile.

The third parameter is an integer expressed as a standard file open flag as defined for the Windows
OpenFile function, normally OF_READ, since movies generally cannot be opened other than read-only
in the current version of QuickTime for Windows. OpenMovieFile returns an OSErr, which is checked and
handled in the same way as it was for EnterMovies and QTInitialize.

Note: For overall clarity, return codes are not checked for QuickTime for Windows functions beyond this point. Of
course, in production-grade code all QuickTime for Windows return values would be checked and handled
appropriately.

To initialize a movie object to pass to NewMovieController, we have to call NewMovieFromFile. Its first
parameter is the address of our movie object mMovie. Second is the mfMovie assigned by QuickTime
for Windows when we called OpenMovieFile. The fifth parameter is hardcoded to 0 to mark it simply as
inactive. The rest of the parameters are set to NULL in the current version of QuickTime for Windows. For
each movie you want to play, you must call OpenMovieFile and NewMovieFromFile. WINPLAY1 only
plays a single movie, and thus only makes the calls once.

CloseMovieFile is called next, since movie files should not be left open any longer than necessary. It
takes the popular mfMovie as its only parameter.

6. Creating a Movie Controller
While NewMovieFromFile allocates and initializes all storage required for the movie and performs various
internal tasks (e.g. telling QuickTime for Windows' scheduler to add the movie to its tables), there is still
some conceptual distance to go before show time. What we have now is access to a sizable collection of
movie data with no mechanism to play it. As explained in the overview, this is the role of the Movie
Controller.

Before bringing up QuickTime for Windows' heavy artillery, we must first package up some data to pass it,
specifically our movie's size and position within WINPLAY1's client area. The routine GetMovieBox
provides these values, which are the natural dimensions of the movie as contained in the movie file (if the
movie is freshly extracted with NewMovieFromFile).

We are now prepared to call NewMovieController, which must be done for each movie controller you wish
to create (again, our sample program only has one, thus a single call). The parameters are:

· mMovie, the movie object assigned by QuickTime for Windows when it
processed NewMovieFromFile

· the address of rcMovie, the structure we have just filled with our movie's
desired dimensions and coordinates

· mcTopLeftMovie and mcScaleMovieToFit, standard controller
creation flags for displaying the movie in the movie rectangle (rcMovie)

· hWnd, the window handle for WINPLAY1, whose window will be the parent for
the new movie controller and associated movie.

NewMovieController returns a MovieController object, an entity which you will use extensively in
subsequent QuickTime for Windows calls.

Several key things now happen involving the QuickTime for Windows internal functions and data
structures. The visible effect, once the movie is made visible, is the creation of the movie controller and its
individual controls.

Before we call ShowWindow, however, we have to make WINPLAY1's frame window just big enough to
enclose the movie and movie controller. This is accomplished with a combination of Windows calls and
the routine MCGetControllerBoundsRect.

As explained in the overview, once a movie is associated with a controller, it starts playing immediately
(assuming it has a non-zero play rate, which is normally the case). To make a movie paused when first
visible and associated with a new controller, you can use MCDoAction with an action of mcActionPlay and
a play rate of 0. It is good style to do this as soon as possible after performing the association.

It is important to note again that movies and movie controllers are not married for life. Movie controllers
can be dynamically reassigned to movies at any point in your program, providing they are properly
initialized. Destroying one does not destroy the other, nor does disconnecting a movie/movie controller
pair disable either component. You will learn various ways to exploit this feature as you explore this
tutorial.

7. Modifying the Window Procedure
The single piece of QuickTime for Windows code in WndProc is the routine MCIsPlayerMessage, but it
wields significant power. Its parameters are:

· mcController, the movie controller object initialized in
NewMovieController

· hWnd, the main window handle of WINPLAY1

· message, wParam and lParam, the same parameters passed in to WndProc.

To elaborate on the overview, the job of MCIsPlayerMessage is to redirect all messages targeted for the
movie controller. If a message received by WndProc is not meant for the movie controller,
MCIsPlayerMessage returns 0 and the message gets processed normally. If the message is supposed to
be handled by the movie controller, MCIsPlayerMessage returns non-zero and the message does not get
switched.

Remember that for each movie controller you create, you have to code a separate call to MCIsPlayerMessage
with the corresponding mcController variable as the first parameter. Since WINPLAY1 creates a lone controller,
we only make the call once.

8. Cleaning Up
Before WINPLAY1 exits, it needs to make sure it has not left any garbage lying around or kept any
resources tied up. We do this in three stages, conceptually the reverse order of how the initialization was
handled. First, we destroy the movie controller by calling DisposeMovieController, which takes the
mcController object as its only parameter, and needs to be called for every movie controller you have
created.

Second, the movie is released by executing DisposeMovie. This, too, is required for each movie you
have instantiated, with the appropriate mMovie object as its sole parameter. Finally, ExitMovies (if your
application plays movies) and QTTerminate are invoked. Like their counterparts that handle QuickTime for
Windows initialization, they must only be called once by your program. As noted in the overview,
executing QTInitialize is not required, but is recommended for good overall style.

Remember that while destroying a window with a movie controller in it causes the function DisposeMovieController
to be called internally for that controller, this is a safety feature only. Good QuickTime for Windows style dictates
specifically disposing the controller.

9. Running WINPLAY1.EXE
Having successfully compiled and linked WINPLAY1.EXE, you will want to fire it up and watch it play a
movie. Before you do, however, you need to check that the movie name hardcoded in the
OpenMovieFile routine matches the file name and location of the movie you expect to play. Since
WINPLAY1.EXE only specifies the movie name (and not the path), make sure SAMPLE.MOV is in the
same directory as WINPLAY1.EXE before you run it. If you want to play other movies without rebuilding
WINPLAY1.EXE, you can copy any other sample movie files to the directory containing WINPLAY1.EXE,
using the hardcoded movie name as a target file name.

Once you have made sure WINPLAY1.EXE can find its data, you should try to run it, preferably using the
Run option under the Program Manager's File menu item. Clicking on the face of the movie window or
the start button in the movie controller will run the movie. Now is probably a good time to experiment with
the other movie controller buttons to get a feel for its basic operation.

C. STEREO - Managing Multiple Movies
1. Introduction
2. The STEREO Source Code
3. Understanding Active and Inactive Movie States
4. Visualizing Attached and Detached Movie Controllers
5. Attaching Movie Controllers to Movies
6. Detaching and Re-attaching a Movie Controller
7. Resizing Movies and Movie Controllers
8. Calling MCIsPlayerMessage More than Once
9. Running STEREO.EXE

1. Introduction
Now that you can play a movie in a Windows program, you should next understand the issues of dealing
with various movies in the same application. In this section, you will create a program called
STEREO.EXE which plays two movies simultaneously and lets you dynamically detach their controllers.
The concepts we'll explore include:

· Active and inactive states of movies and movie controllers

· Attached and detached movie controllers

· Resizing movies and movie controllers

· Multiple calls to MCIsPlayerMessage in a window procedure.

2. The STEREO Source Code
Before getting into the STEREO.C listing, you should note that the Common Dialog Box Library is used to
create the Open Movie dialog box. COMMDLG.LIB is included on the link line of STEREO.MAK.

STEREO.MAK

ALL : STEREO.EXE

STEREO.OBJ : STEREO.C STEREO.H
 cl -c -AS -DSTRICT -G2 -Zpel -W3 -WX -Od stereo.c

STEREO.RES : STEREO.RC STEREO.H
 rc -r stereo.rc

STEREO.EXE : STEREO.OBJ STEREO.RES STEREO.DEF
 link /nod /a:16 stereo, stereo.exe, nul, qtw commdlg libw slibcew, \
 stereo.def;
 rc stereo.res

STEREO.DEF

NAME STEREO
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

STEREO.H
#define IDM_OPEN 1
#define IDM_ATTACH 2
#define IDM_DETACH 3

STEREO.RC

#include <windows.h>
#include "stereo.h"

stereo MENU
 {
 POPUP "&File"
 {
 MENUITEM "&Open...", IDM_OPEN
 }
 POPUP "&Action"
 {
 MENUITEM "&Attach Controller", IDM_ATTACH
 MENUITEM "&Detach Controller", IDM_DETACH
 }
 }

STEREO.C

#include <windows.h>
#include <commdlg.h>
#include <string.h>
#include <stdlib.h>
#include <direct.h>
#include <qtw.h>
#include "stereo.h"

#ifdef __BORLANDC__
 #define _getcwd getcwd
#endif

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);
VOID CalcSize (HWND);

RECT rcLeft, rcRight, rcMovieBox, rcClient;
MovieController mcLeft, mcRight, mcActive;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName [] = "Stereo";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;
// Establish links to QuickTime for Windows
 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;
 }
// Allocate memory required for playing movies
 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }
// Register and create main window
 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = szAppName;
 wndclass.lpszClassName = szAppName;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;

 }
 }
 hWnd = CreateWindow (szAppName, szAppName, WS_OVERLAPPEDWINDOW |
 WS_CLIPCHILDREN, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);
 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }
// Show the main window
 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);
// Play the movies
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
// Cut the connections to QuickTime for Windows
 ExitMovies ();
 QTTerminate ();
// Return to Windows
 return msg.wParam;
 }

long FAR PASCAL __export WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
 {
 OPENFILENAME ofn;
 PAINTSTRUCT ps;
 BOOL bLeft;
 POINT ptMovie;
 MovieFile mfMovie;
 static Movie mLeft, mRight;
 static char szDirName [256];
 static char szFile [256];
 static char szFileTitle [256];

// Drive the movie controllers
 if (MCIsPlayerMessage (mcLeft, hWnd, message, wParam, lParam)
 || MCIsPlayerMessage (mcRight, hWnd, message, wParam, lParam))
 return 0;
// Process window messages
 switch (message)
 {
 // Create empty movie controllers when main window is created
 case WM_CREATE:
 SetRectEmpty (&rcMovieBox);
 SetRectEmpty (&rcClient);
 mcLeft = NewMovieController (NULL, &rcClient,
 mcNotVisible, hWnd);
 mcRight = NewMovieController (NULL, &rcClient,
 mcNotVisible, hWnd);
 return 0;
 // Process menu commands
 case WM_COMMAND:

 switch (wParam)
 {
 // Use COMMDLG to open a movie file
 case IDM_OPEN:
 memset (&ofn, 0, sizeof (ofn));
 ofn.lStructSize = sizeof (ofn);
 ofn.hwndOwner = hWnd;
 ofn.lpstrFilter = "Movies (*.mov)\0*.mov\0\0";
 ofn.nFilterIndex = 1;
 ofn.lpstrFile = szFile;
 ofn.nMaxFile = sizeof (szFile);
 ofn.lpstrFileTitle = szFileTitle;
 ofn.nMaxFileTitle = sizeof (szFileTitle);
 ofn.lpstrInitialDir =
 _getcwd (szDirName, sizeof (szDirName));
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
 if (GetOpenFileName (&ofn) &&
 (OpenMovieFile (ofn.lpstrFile, &mfMovie,
 OF_READ) == noErr))
 {
 RECT rcGrowBox;
 // Dispose of any existing movies
 DisposeMovie (mLeft);
 DisposeMovie (mRight);
 // Extract two instances of the same movie
 NewMovieFromFile (&mLeft, mfMovie, NULL, NULL,
 0, NULL);
 NewMovieFromFile (&mRight, mfMovie, NULL, NULL,
 0, NULL);
 CloseMovieFile (mfMovie);
 // Get the normal dimensions of the movie
 GetMovieBox (mLeft, &rcMovieBox);
 OffsetRect (&rcMovieBox, -rcMovieBox.left,
 -rcMovieBox.top);
 // Calculate initial positions of controllers
 GetClientRect (hWnd, &rcClient);
 rcLeft.top = rcRight.top = rcClient.top +
 (rcClient.bottom / 2) - (rcMovieBox.bottom / 2);
 rcLeft.bottom = rcRight.bottom = rcClient.top +
 (rcClient.bottom / 2) + (rcMovieBox.bottom / 2);
 rcLeft.left = (rcClient.right / 4)
 - (rcMovieBox.right / 2);
 rcLeft.right = rcLeft.left + rcMovieBox.right;
 rcRight.left = (rcClient.right / 2)
 + (rcClient.right / 4)
 - (rcMovieBox.right / 2);
 rcRight.right = rcRight.left + rcMovieBox.right;
 // Associate the movies with the existing controllers
 ptMovie.x = rcLeft.left;
 ptMovie.y = rcLeft.top;
 MCSetMovie (mcLeft, mLeft, hWnd, ptMovie);
 ptMovie.x = rcRight.left;
 ptMovie.y = rcRight.top;
 MCSetMovie (mcRight, mRight, hWnd, ptMovie);
 // Pause the movies
 MCDoAction (mcLeft, mcActionPlay, 0);
 MCDoAction (mcRight, mcActionPlay, 0);

 // Center the movies
 MCPositionController (mcLeft, &rcLeft,
 NULL, mcTopLeftMovie + mcScaleMovieToFit);
 MCPositionController (mcRight, &rcRight,
 NULL, mcTopLeftMovie + mcScaleMovieToFit);
 // Make the controllers visible
 MCSetVisible (mcLeft, TRUE);
 MCSetVisible (mcRight, TRUE);
 // Make both movies active and the right mc inactive
 SetMovieActive (mLeft, TRUE);
 SetMovieActive (mRight, TRUE);
 MCActivate (mcRight, hWnd, FALSE);
 // Eliminate the grow boxes
 SetRectEmpty (&rcGrowBox);
 MCDoAction (mcLeft, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 MCDoAction (mcRight, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 }
 return 0;
 // Change active controller to attached
 case IDM_ATTACH:
 MCSetControllerAttached (mcActive, TRUE);
 return 0;
 // Change active controller to detached
 case IDM_DETACH:
 {
 RECT rcMCRect;
 SHORT sMCHeight;
 // Detach the controller
 MCSetControllerAttached (mcActive, FALSE);
 // Choose the appropriate movie/movie controller
 if (mcActive == mcLeft)
 {
 // Get the bounds rect for the controller only
 // since it is now detached
 MCGetControllerBoundsRect (mcLeft, &rcMCRect);
 OffsetRect (&rcMCRect, -rcMCRect.left, -rcMCRect.top);
 // Save the controller height
 sMCHeight = rcMCRect.bottom - rcMCRect.top;
 // Move the controller down
 memcpy (&rcMCRect, &rcLeft, sizeof (RECT));
 rcMCRect.top = rcLeft.bottom +
 (rcMovieBox.bottom / 2);
 rcMCRect.bottom = rcMCRect.top + sMCHeight;
 MCPositionController (mcLeft, &rcLeft, &rcMCRect,
 mcTopLeftMovie);
 }
 else
 {
 // Get the bounds rect for the controller only
 // since it is now detached
 MCGetControllerBoundsRect (mcRight, &rcMCRect);
 OffsetRect (&rcMCRect, -rcMCRect.left, -rcMCRect.top);
 // Save the controller height
 sMCHeight = rcMCRect.bottom - rcMCRect.top;
 // Move the controller down

 memcpy (&rcMCRect, &rcRight, sizeof (RECT));
 rcMCRect.top = rcRight.bottom +
 (rcMovieBox.bottom / 2);
 rcMCRect.bottom = rcMCRect.top + sMCHeight;
 MCPositionController (mcRight, &rcRight, &rcMCRect,
 mcTopLeftMovie);
 }
 }
 return 0;
 }
 return 0;
 // Center the controllers in the left and right halves of the window
 case WM_SIZE:
 // Attach the controllers
 MCSetControllerAttached (mcLeft, TRUE);
 MCSetControllerAttached (mcRight, TRUE);
 CalcSize (hWnd);
 MCSetControllerBoundsRect (mcLeft, &rcLeft);
 MCSetControllerBoundsRect (mcRight, &rcRight);
 return 0;
 case WM_LBUTTONDOWN:
 {
 SFIXED sfxVolume;
 // Activate the controller selected by the mouse click
 GetClientRect (hWnd, &rcClient);
 bLeft = (SHORT) (LOWORD (lParam)) < ((rcClient.right -
 rcClient.left) / 2);
 mcActive = bLeft ? mcLeft : mcRight;
 MCActivate (mcLeft, hWnd, bLeft);
 MCActivate (mcRight, hWnd, !bLeft);
 // Disable sound and keyboard interface for appropriate controller
 if (mcActive == mcLeft)
 {
 MCDoAction (mcRight, mcActionGetVolume, (LPVOID)
 &sfxVolume);
 sfxVolume = - (abs (sfxVolume));
 MCDoAction (mcRight, mcActionSetVolume, (LPVOID) sfxVolume);
 MCDoAction (mcRight, mcActionSetKeysEnabled,
 (LPVOID) FALSE);
 }
 else
 {
 MCDoAction (mcLeft, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = - (abs (sfxVolume));
 MCDoAction (mcLeft, mcActionSetVolume, (LPVOID) sfxVolume);
 MCDoAction (mcLeft, mcActionSetKeysEnabled, (LPVOID) FALSE);
 }
 // Enable sound and keyboard for active controller
 MCDoAction (mcActive, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = abs (sfxVolume);
 MCDoAction (mcActive, mcActionSetVolume, (LPVOID) sfxVolume);
 MCDoAction (mcActive, mcActionSetKeysEnabled, (LPVOID) TRUE);
 }
 return 0;
 // Repaint the Window
 case WM_PAINT:
 if (!BeginPaint (hWnd, &ps))

 return 0;
 EndPaint (hWnd, &ps);
 return 0;
 // Destroy the movies and controllers when the window is destroyed
 case WM_DESTROY:
 DisposeMovieController (mcLeft);
 DisposeMovieController (mcRight);
 DisposeMovie (mLeft);
 DisposeMovie (mRight);
 PostQuitMessage (0);
 return 0;
 }
// Return to Windows
 return DefWindowProc (hWnd, message, wParam, lParam);
 }

VOID CalcSize (HWND hWndCaller)
 {
 RECT rcBounds;

 GetClientRect (hWndCaller, &rcClient);
 MCGetControllerBoundsRect (mcLeft, &rcBounds);
 OffsetRect (&rcBounds, -rcBounds.left, -rcBounds.top);
 rcLeft.top = rcRight.top = rcClient.top +
 (rcClient.bottom / 2) - (rcBounds.bottom / 2);
 rcLeft.bottom = rcRight.bottom = rcClient.top +
 (rcClient.bottom / 2) + (rcBounds.bottom / 2);
 rcLeft.left = (rcClient.right / 4) - (rcBounds.right / 2);
 rcLeft.right = (rcClient.right / 4) + (rcBounds.right / 2);
 MCGetControllerBoundsRect (mcRight, &rcBounds);
 OffsetRect (&rcBounds, -rcBounds.left, -rcBounds.top);
 rcRight.left = (rcClient.right / 2) + (rcClient.right / 4)
 - (rcBounds.right / 2);
 rcRight.right = (rcClient.right / 2) + (rcClient.right / 4)
 + (rcBounds.right / 2);
 }

3. Understanding Active and Inactive Movie States
As we learned in the overview, both movies and movie controllers have active and inactive states. While
they are easy to set, it is still important to remember two things: these states do not affect QuickTime for
Windows programs in parallel ways, and more than one movie or controller can be active simultaneously.

A movie's state can be set by SetMovieActive, whose parameters are the movie object and a value of
either TRUE (for active) or FALSE (for inactive). An inactive movie simply is not played--it does not receive
cycles from QuickTime for Windows' internal scheduler. Don't confuse a movie's active state with its
playing/paused state. In other words, calling SetMovieActive should not be used to start or stop playing a
movie.

A movie controller's state can be set by MCActivate with its last parameter set to TRUE or FALSE. Again,
since movie controllers generally mirror the behavior of standard Windows controls, it is useful to view an
inactive movie controller as a disabled Windows control. It cannot receive user input (i.e. mouse clicks,
since keyboard input is enabled separately) and its appearance is grayed. Movie controllers are created
with an active state by default.

A movie/movie controller pair can easily have opposing states. For instance, an active movie can have an
inactive controller, and vice versa. In the former case, a playing movie's controller can be deactivated,
graying it and prohibiting further user input, but the movie will keep playing. In the latter, clicking the start
button on an inactive movie's active controller will not play the movie.

Since more than one movie or movie controller can have active or inactive status under QuickTime for
Windows itself, it is the application's responsibility to identify and keep track of its own application specific
active movies, movie controllers and controller attributes (e.g., sound and keyboard states). Any serious
QuickTime for Windows program design must be aware of and incorporate this paradigm if it expects to
effectively route events and call QuickTime for Windows functions with appropriate movie and movie
controller objects.

STEREO addresses the issue in an elementary way using a variable called mcActive. Whenever a
movie controller is activated by a user input event (i.e. a mouse click), the movie controller object linked to
the window area which received the click is copied into this variable. (This is merely a convention used to
simplify our sample program--see the code fragment below). As a result, routines using the program's
active movie controller object pass mcActive instead of the variable that received the original controller
object.

STEREO calls MCActivate on what it deems its non-active controller with the last parameter set to
FALSE, setting it to a QuickTime for Windows inactive state. This in turn causes the controller's elements
to be grayed (see Figure 21, below).
case WM_LBUTTONDOWN:
 ·
 ·
// Activate the controller selected by the mouse click
 GetClientRect (hWnd, &rcClient);
 bLeft = (SHORT) (LOWORD (lParam)) < ((rcClient.right -
 rcClient.left) / 2);
 mcActive = bLeft ? mcLeft : mcRight;
 MCActivate (mcLeft, hWnd, bLeft);
 MCActivate (mcRight, hWnd, !bLeft);
 ·
 ·
 return 0;

4. Visualizing Attached and Detached Movie Controllers
A movie controller is attached to or detached from a movie also by an explicit QuickTime for Windows
function call, such as MCSetControllerAttached. Once attached, it is automatically associated and
normally appears joined to the bottom edge of the movie (under uncommon circumstances they may be
programatically attached but not physically joined). When the controller is used for resizing, both it and
the movie grow or shrink together. If the application repositions either one of them, they both travel in
unison.

Detached movie controllers are not joined physically to their movies (as above, this is the normal
condition--sometimes they may be programatically detached but not separated). Although they play their
movies just like attached controllers, repositioning or resizing one does not necessarily affect the other. As
you will see, detached movie controllers can perform some very useful functions.

You cannot create a detached movie controller from scratch. If your program requires one, you have to
detach an existing attached controller. STEREO plays with this idea a little by creating a pair of movie
controllers using NewMovieController with its first parameter set to NULL, then associating them with
movies when they are opened.

The other parameters are the address of the RECT containing the controller's screen coordinates--in this
case all zeros, the controller creation flags and the parent window handle.

STEREO's two movie controllers are created early (and invisibly) to simplify the flow of this tutorial
application. Not only that, they also play the same movie--eventually. Nevertheless, the program
demonstrates several important differences between attached and detached controllers, as well as
QuickTime for Windows' high degree of flexibility in handling them and its other components.

5. Attaching Movie Controllers to Movies
As explained in the overview, the function MCNewAttachedController is often used to both associate and
attach movies and movie controllers. STEREO uses MCSetMovie instead to simply associate them. Its
significant parameters are PtLeft and PtRight, the upper left corners of the movies relative to their
parent window.

STEREO calls MCSetMovie on its existing controllers as soon as a movie is selected for opening,
detaches them for proper sizing of their movie rectangles, then re-attaches them and makes them visible.
We now have two otherwise normal movies with attached movie controllers ready for playing. But this is
not the only way to attach a movie controller to a movie, as you can infer by using the Action menu to
dynamically detach and re-attach them even while they are running.

6. Detaching and Re-attaching a Movie Controller
Pulling down the Action menu gives you Attach Controller and Detach Controller options for the
application's active movie controller. If the controller is not attached, selecting Attach Controller causes it
to jump to its appropriate attached position. The routine used for this purpose is
MCSetControllerAttached, which takes as parameters the movie controller object and the boolean value
TRUE.

Selecting the Detach Controller menu item when the controller is currently attached to a movie triggers
two significant events. First, MCSetControllerAttached is called with a value of FALSE. This alone,
however, does not physically separate the movie controller from the movie. To split them apart you need
MCPositionController.

The parameters of interest are the addresses of the RECT structures for the desired coordinates of the
movie and the movie controller. If we had wanted to query the attachment state of the movie controller so
we could, say, gray the appropriate menu item, we could have used the routine MCIsControllerAttached.

STEREO uses numbers which set the resulting detached controllers at arbitrary distances slightly below
their movies, but your future programs could use values which have real meaning in developing a
consistent user interface for your QuickTime for Windows applications. For example, your detached
movie controllers could be handled like custom menus or tool bars in terms of their default positions and
where the user of the application might expect to find them if not attached to their movies.

7. Resizing Movies and Movie Controllers
Just as it is the application's job to designate and track its own active movie controller(s), it must also
handle changing movie and movie controller dimensions if the application's window is resized. STEREO
does this under the WM_SIZE case in its window procedure, using the routine
MCSetControllerBoundsRect.

When a WM_SIZE message is received, the program gets the coordinates of the client rectangle. It then
bisects that area vertically to derive left and right sub-rectangles for each movie, which are supplied with
slight offsets to MCSetControllerBoundsRect The function centers the resized movies and controllers in
the new rectangles.

In your own QuickTime for Windows programs you may not want to resize your movies with your program
windows. STEREO does it to show you the power of this particular call.

8. Calling MCIsPlayerMessage More than Once
Each movie controller that you want to receive messages must have a corresponding
MCIsPlayerMessage call in the window procedure of its parent window. STEREO.C contains two
instances of the routine, each one with a different controller object.

As your QuickTime for Windows programs get more complex, this is one of the points where you should
carefully design the handling of their movie controller messages. For instance, you might keep an array of
controller objects and call MCIsPlayerMessage in a for loop, passing specific objects conditionally, etc.
Again, you will have to decide the best way to handle this.

9. Running STEREO.EXE
When STEREO.EXE is executed, the movie controllers will not be visible in the client area of the main
window, since no movie is open yet. When a movie is opened from the file menu, each controller will
become visible and attach itself to one of the two movies which will appear in STEREO's client area. The
left one is initially set to an active state, and the right one made inactive.

As you experiment with the Action menu, your movie controllers will become detached and re-attached.
You will notice that while the visual parts of both movies can play simultaneously, only the sound track of
the active movie will be played. This is a Windows limitation--not a condition that can be controlled with
the QuickTime for Windows API.

D. BIGEIGHT - Movie Controller Attributes
1. Introduction
2. The BIGEIGHT Source Code
3. The Power of MCDoAction
4. Actions and Flags
5. Regulating Movie Controller Attributes with MCDoAction
6. Using MCSetVisible
7. Badges
8. Running BIGEIGHT.EXE

1. Introduction
Beyond overt characteristics like association and attachment, movie controllers have many other useful
attributes. The next sample program, BIGEIGHT.EXE, allows you to switch on and off eight of these
attributes for a single detached movie controller. The attributes demonstrated are: controller visibility,
speaker button visibility, step button visibility, grow box visibility, sound availability, keyboard interface
availability, movie looping and palindrome looping modes.

2. The BIGEIGHT Source Code

BIGEIGHT.MAK

ALL : BIGEIGHT.EXE

BIGEIGHT.OBJ : BIGEIGHT.C
 cl -c -AS -DSTRICT -G2 -Zpel -W3 -WX -Od bigeight.c

BIGEIGHT.RES : BIGEIGHT.RC BIGEIGHT.H
 rc -r bigeight.rc

BIGEIGHT.EXE : BIGEIGHT.OBJ BIGEIGHT.RES BIGEIGHT.DEF
 link /nod /a:16 bigeight, bigeight.exe, nul, qtw libw slibcew, \
 bigeight.def
 rc bigeight.res

BIGEIGHT.DEF

NAME BIGEIGHT
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

BIGEIGHT.H

#define IDM_CONTROLLER 1
#define IDM_GROW_BOX 2
#define IDM_KEYBOARD 3
#define IDM_LOOPING 4
#define IDM_PALINDROME 5
#define IDM_SOUND 6
#define IDM_SPEAKER_BUTTON 7
#define IDM_STEP_BUTTONS 8

BIGEIGHT.RC

#include <windows.h>
#include "bigeight.h"

bigeight MENU
 {
 POPUP "&Attributes"
 {
 MENUITEM "&Hide Controller", IDM_CONTROLLER
 MENUITEM "&Hide Step Buttons", IDM_STEP_BUTTONS
 MENUITEM "&Hide Speaker Button", IDM_SPEAKER_BUTTON
 MENUITEM "&Hide Grow Box", IDM_GROW_BOX
 MENUITEM SEPARATOR

 MENUITEM "&Disable Keyboard Interface", IDM_KEYBOARD
 MENUITEM "&Disable Sound", IDM_SOUND
 MENUITEM "&Enable Looping", IDM_LOOPING
 MENUITEM "&Enable Palindrome Looping", IDM_PALINDROME
 }
 }

BIGEIGHT.C

#include <windows.h>
#include <qtw.h>
#include "bigeight.h"

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);

MovieController mcController;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName[] = "BigEight";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;
 Movie mMovie;
 RECT rcMovie, rcMovieBox;
 MovieFile mfMovie;

// Establish links to QuickTime for Windows
 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);
 return 0;
 }
// Allocate memory required for playing movies
 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }
// Register and create main window
 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = szAppName;
 wndclass.lpszClassName = szAppName;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);

 return 0;
 }
 }
 hWnd = CreateWindow(szAppName, szAppName, WS_OVERLAPPEDWINDOW |
 WS_CLIPCHILDREN, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);
 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }
// Instantiate the movie
 if (OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ) != noErr)
 {
 MessageBox (NULL, "OpenMovieFile failure", szAppName, MB_OK);
 return 0;
 }
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
 CloseMovieFile (mfMovie);
// Instantiate the movie controller
 GetMovieBox (mMovie, &rcMovieBox);
 OffsetRect(&rcMovieBox, -rcMovieBox.left, -rcMovieBox.top);
 GetClientRect (hWnd, &rcMovie);
 rcMovie.top = (rcMovie.bottom / 2) - (rcMovieBox.bottom / 2);
 rcMovie.bottom = rcMovie.top + rcMovieBox.bottom;
 rcMovie.left = (rcMovie.right / 2) - (rcMovieBox.right / 2);
 rcMovie.right = rcMovie.left + rcMovieBox.right;
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);
// Make the movie paused initially
 MCDoAction (mcController, mcActionPlay, 0);
// Enable the keyboard interface
 MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) TRUE);
// Make the movie active
 SetMovieActive (mMovie, TRUE);
// Make the main window visible
 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);
// Play the movie
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
// Destroy the movie controller
 DisposeMovieController (mcController);
// Destroy the movie
 DisposeMovie (mMovie);
// Cut the connections to QuickTime for Windows
 ExitMovies ();
 QTTerminate ();
// Return to Windows
 return msg.wParam;
 }

long FAR PASCAL __export WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)

 {
 PAINTSTRUCT ps;
 RECT rcGrowBox;

 static BOOL bControllerVisible = TRUE;
 static BOOL bGrowBoxVisible = TRUE;
 static BOOL bKeysEnabled = TRUE;
 static BOOL bLoopingEnabled = FALSE;
 static BOOL bPalindromeEnabled = FALSE;
 static BOOL bSoundEnabled = TRUE;
 static BOOL bSpeakerVisible = TRUE;
 static BOOL bSteppersVisible = TRUE;

// Drive the movie controller
 if (MCIsPlayerMessage (mcController, hWnd, message, wParam, lParam))
 return 0;
// Process the windows message
 switch (message)
 {
 case WM_COMMAND:
 {
 HANDLE hMenu;
 hMenu= GetMenu (hWnd);
 switch (wParam)
 {
 case IDM_CONTROLLER:
 {
 if (bControllerVisible == FALSE)
 {
 // Change the controller menu item
 ModifyMenu (hMenu, IDM_CONTROLLER, MF_BYCOMMAND |
 MF_STRING, IDM_CONTROLLER,
 (LPSTR) "Hide Controller");
 bControllerVisible = TRUE;
 // Show the controller
 MCSetVisible (mcController, TRUE);
 // Ungray the other menu itmes
 EnableMenuItem (hMenu, IDM_STEP_BUTTONS, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_SPEAKER_BUTTON,
 MF_ENABLED);
 EnableMenuItem (hMenu, IDM_GROW_BOX, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_KEYBOARD, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_SOUND, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_LOOPING, MF_ENABLED);
 EnableMenuItem (hMenu, IDM_PALINDROME, MF_ENABLED);
 }
 else
 {
 // Change the controller menu item
 ModifyMenu (hMenu, IDM_CONTROLLER, MF_BYCOMMAND |
 MF_STRING, IDM_CONTROLLER,
 (LPSTR) "Show Controller");
 bControllerVisible = FALSE;
 // Hide the controller
 MCSetVisible (mcController, FALSE);
 // Grey the rest of the menu items
 EnableMenuItem (hMenu, IDM_STEP_BUTTONS, MF_GRAYED);

 EnableMenuItem (hMenu, IDM_SPEAKER_BUTTON, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_GROW_BOX, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_KEYBOARD, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_SOUND, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_LOOPING, MF_GRAYED);
 EnableMenuItem (hMenu, IDM_PALINDROME, MF_GRAYED);
 }
 }
 break;
 case IDM_STEP_BUTTONS:
 {
 LONG lFlags;
 if (bSteppersVisible == FALSE)
 {
 // Change the step button menu item
 ModifyMenu (hMenu, IDM_STEP_BUTTONS, MF_BYCOMMAND |
 MF_STRING, IDM_STEP_BUTTONS,
 (LPSTR) "Hide Step Buttons");
 bSteppersVisible = TRUE;
 // Restore the step buttons
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags &= ~mcFlagSuppressStepButtons;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }
 else
 {
 // Change the step button menu item
 ModifyMenu (hMenu, IDM_STEP_BUTTONS, MF_BYCOMMAND |
 MF_STRING, IDM_STEP_BUTTONS,
 (LPSTR) "Show Step Buttons");
 bSteppersVisible = FALSE;
 // Hide the step buttons
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressStepButtons;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }
 }
 break;
 case IDM_SPEAKER_BUTTON:
 {
 LONG lFlags;
 if (bSpeakerVisible == FALSE)
 {
 // Change the speaker button menu item
 ModifyMenu (hMenu, IDM_SPEAKER_BUTTON, MF_BYCOMMAND |
 MF_STRING, IDM_SPEAKER_BUTTON,
 (LPSTR) "Hide Speaker Button");
 bSpeakerVisible = TRUE;
 // Restore the speaker button
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags &= ~mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }
 else

 {
 // Change the speaker button menu item
 ModifyMenu (hMenu, IDM_SPEAKER_BUTTON, MF_BYCOMMAND |
 MF_STRING, IDM_SPEAKER_BUTTON,
 (LPSTR) "Show Speaker Button");
 bSpeakerVisible = FALSE;
 // Hide the speaker button
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags,
 (LPVOID) lFlags);
 }
 }
 break;
 case IDM_GROW_BOX:
 {
 if (bGrowBoxVisible == FALSE)
 {
 // Change the grow box menu item
 ModifyMenu (hMenu, IDM_GROW_BOX, MF_BYCOMMAND |
 MF_STRING, IDM_GROW_BOX, (LPSTR) "Hide Grow Box");
 bGrowBoxVisible = TRUE;
 // Set the grow box bounds to make it visible
 GetClientRect (hWnd, &rcGrowBox);
 MCDoAction (mcController, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 }
 else
 {
 // Change the grow box menu item
 ModifyMenu (hMenu, IDM_GROW_BOX, MF_BYCOMMAND |
 MF_STRING, IDM_GROW_BOX,(LPSTR) "Show Grow Box");
 bGrowBoxVisible = FALSE;
 // Set the grow box bounds to all zeros to hide it
 SetRectEmpty (&rcGrowBox);
 MCDoAction (mcController, mcActionSetGrowBoxBounds,
 &rcGrowBox);
 }
 }
 break;
 case IDM_KEYBOARD:
 {
 if (bKeysEnabled == FALSE)
 {
 // Change the keyboard interface menu item
 ModifyMenu (hMenu, IDM_KEYBOARD, MF_BYCOMMAND |
 MF_STRING, IDM_KEYBOARD,
 (LPSTR) "Disable Keyboard Interface");
 bKeysEnabled = TRUE;
 // Enable the keyboard interface
 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) TRUE);
 }
 else
 {
 // Change the keyboard interface menu item
 ModifyMenu (hMenu, IDM_KEYBOARD, MF_BYCOMMAND |

 MF_STRING, IDM_KEYBOARD,
 (LPSTR) "Enable Keyboard Interface");
 bKeysEnabled = FALSE;
 // Disable the keyboard interface
 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) FALSE);
 }
 }
 break;
 case IDM_SOUND:
 {
 SFIXED sfxVolume;
 if (bSoundEnabled == FALSE)
 {
 // Change the sound menu item
 ModifyMenu (hMenu, IDM_SOUND, MF_BYCOMMAND |
 MF_STRING, IDM_SOUND, (LPSTR) "Disable Sound");
 // Restore the sound
 MCDoAction (mcController, mcActionGetVolume,
 (LPVOID) &sfxVolume);
 sfxVolume = abs (sfxVolume);
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);
 bSoundEnabled = TRUE;
 }
 else
 {
 // Mute the sound
 MCDoAction (mcController, mcActionGetVolume,
 (LPVOID) &sfxVolume);
 sfxVolume = -(abs (sfxVolume));
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);
 bSoundEnabled = FALSE;
 }
 }
 break;
 case IDM_LOOPING:
 {
 if (bLoopingEnabled == FALSE)
 {
 // Change the looping menu item
 ModifyMenu (hMenu, IDM_LOOPING, MF_BYCOMMAND |
 MF_STRING, IDM_LOOPING, (LPSTR) "Disable Looping");
 bLoopingEnabled = TRUE;
 // Enable looping
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 }
 else
 {
 // Change the looping menu item
 ModifyMenu (hMenu, IDM_LOOPING, MF_BYCOMMAND |
 MF_STRING, IDM_LOOPING, (LPSTR) "Enable Looping");
 bLoopingEnabled = FALSE;
 // Disable looping
 MCDoAction (mcController, mcActionSetLooping,

 (LPVOID) FALSE);
 }
 }
 break;
 case IDM_PALINDROME:
 {
 if (bPalindromeEnabled == FALSE)
 {
 // Change the palindrome menu item
 ModifyMenu (hMenu, IDM_PALINDROME, MF_BYCOMMAND |
 MF_STRING, IDM_PALINDROME,
 (LPSTR) "Disable Palindrome Looping");
 bPalindromeEnabled = TRUE;
 // Enable palindrome looping
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);
 }
 else
 {
 // Change the palindrome menu item
 ModifyMenu (hMenu, IDM_PALINDROME, MF_BYCOMMAND |
 MF_STRING, IDM_PALINDROME,
 (LPSTR) "Enable Palindrome Looping");
 bPalindromeEnabled = FALSE;
 // Disable palindrome looping
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) FALSE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) FALSE);
 }
 }
 break;
 }
 }
 return 0;
 case WM_PAINT:
 if (!BeginPaint (hWnd, &ps))
 return 0;
 EndPaint (hWnd, &ps);
 return 0;
 case WM_DESTROY:
 PostQuitMessage (0);
 return 0;
 }
// Return to Windows
 return DefWindowProc (hWnd, message, wParam, lParam);
 }

3. The Power of MCDoAction
One of the most powerful routines in the QuickTime for Windows API is MCDoAction. As you can see in
the BIGEIGHT.C listing, this function is used to change and query Movie Controller attributes. In
QuickTime for Windows' grand scheme, however, MCDoAction is a cornerstone routine which can be
used to dictate most of the Movie Controller's behavior. It is so versatile, in fact, that several other
QuickTime for Windows routines use it internally to accomplish their particular tasks.

MCDoAction works by taking as its second parameter a particular defined action. There are
approximately thirty-five such mcActions in the QuickTime for Windows API, ranging from starting the
movie to toggling low-level attributes. In most cases, a third parameter is required to modify the task of
the mcAction parameter. Often this is a boolean value which turns a certain attribute on or off, or a pointer
to a value holding state information:
MovieController mcController;
·
·
MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) FALSE);

4. Actions and Flags
There are four components to the methods you use to determine attributes for a movie controller. The first
is the collection of mcActions used by MCDoAction. A full listing of these actions is provided in the entry
for the MCDoAction function.

Second is a group of flags used specifically by MCDoAction when it specifies the mcActions
mcActionSetFlags or mcActionGetFlags:

Flag Function

mcFlagSuppressStepButtons Inhibit display of step buttons

mcFlagSuppressSpeakerButton Inhibit display of speaker button

mcFlagsUseWindowPalette Use a Windows palette to display movies

BIGEIGHT uses the first and second flags in the above list when it hides its movie controller's step and
speaker buttons:
case IDM_SPEAKER_BUTTON:
 ·
 ·
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags, (LPVOID) lFlags);
Use of the flag mcFlagsUseWindowPalette is slightly more complex, as it involves the Windows
palette manager. Telling a movie controller to use this flag essentially enables it to construct a custom
color palette based on the color values found in the movie.

For instance, a particular movie might be of a sunset with fifty shades of orange. If the normal palette is
used, these would all be mapped to a much smaller number of orange-ish hues. If a custom palette is
used, additional shades of orange will be available for a much more faithful display. You should note that
using mcFlagsUseWindowPalette only works with display drivers that support palettes--typically
drivers that handle colors at pixel depth eight.

Also be aware that any program you are running that calls RealizePalette will distort other visible
movies or pictures. This is because the palette on which the other images were based has changed. To
restore them as well as possible, it is recommended that each of your QuickTime for Windows
applications trap the WM_PALETTECHANGED message in its main window procedure. When this message
is received, they should repaint their main windows and all child windows (using InvalidateRect is
recommended) to remap their colors as closely as possible to the newly realized system palette.

The third set of flags constitutes a long integer and can be referred to as the mcInfoFlags. These flags
hold state information set by MCDoAction with one of its mcActions, and can be retrieved by the function
MCGetControllerInfo, as we saw in the overview.

The last group of flags are used to set movie controller attributes at creation time, not in conjunction with
a MCDoAction call:

Flag Function
mcTopLeftMovie positions movie in top left corner of Movie rectangle

mcScaleMovieToFit makes movie fit exactly into movie rectangle

mcWithBadge makes movie controller capable of badge display

mcNotVisible makes movie controller invisible when created

These self-descriptive flags are used by the routine NewMovieController when a movie controller is
created. The first two are used by MCPositionController when a controller is repositioned. BIGEIGHT
uses two of them to instantiate its controller:

MovieController mcController;
Movie mMovie;
RECT rcMovie;
·
·
mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit + mcWithBadge, hWnd);
As the states of these flags are not maintained by a movie controller, the QuickTime for Windows API
does not provide a way to query them.

5. Regulating Movie Controller Attributes with MCDoAction
One of the first uses BIGEIGHT makes of MCDoAction is to enable the movie controller's keyboard
interface:
MovieController mc;
·
·
MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) TRUE);
An inactive keyboard interface is the default attribute for a new movie controller, but you can enable it at
any time by calling MCDoAction as above with the last parameter set to TRUE. BIGEIGHT lets you toggle
this attribute on and off using its attributes menu. Since all movie controllers with their keyboard interface
turned on receive keystrokes, you will have to manage this attribute for each controller in a multi-movie
application.

The default visible attributes of a movie controller are the speaker button, the start/pause button, the
slider, the step buttons and the grow box (for attached controllers only). Of these, the speaker, the
steppers and the grow box can be made invisible, though not all in the same way.

A controller's speaker and step buttons may be hidden or restored using MCDoAction with
mcActionSetFlags and either mcFlagSuppressSpeakerButton or mcFlagSuppressStepButton,
respectively:
case IDM_STEP_BUTTONS:
 ·
 ·
 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags |= mcFlagSuppressStepButtons;
 MCDoAction (mcController, mcActionSetFlags, (LPVOID) lFlags);
In BIGEIGHT, the current flags are retrieved, modified and reset in as short a time as possible. This is
good QuickTime for Windows programming style for a couple of reasons. First, you should not attempt to
maintain a set of these flags yourself. The are managed by QuickTime for Windows and subject to its own
internal functionality. Also, like Windows itself, QuickTime for Windows is a complex message-based
entity that expects you to deal efficiently with any state information it makes available to you.

Hiding the grow box also uses MCDoAction, but with a different action parameter, namely
mcActionSetGrowBoxBounds:
case IDM_GROW_BOX:
 ·
 ·
 SetRectEmpty (&rcGrowBox);
 MCDoAction (mcController, mcActionSetGrowBoxBounds, &rcGrowBox);
What actually hides the grow box are the dimensions of the third parameter, rcMovie, which have all
been set to 0 by the Windows function SetRectEmpty. This is the only way to hide a movie controller's
grow box.

BIGEIGHT calls MCDoAction the same way to restore the grow box, but with a non-zeroed rectangle. In
this case, the client area of the parent window is used nominally.

The looping and looping palindrome attributes affect how a movie plays once it has been started by its
controller. Simple looping specifies that the movie play continuously from start to finish until it is stopped
by the user. Palindrome looping causes it to play continuously back and forth. MCDoAction has defined
actions for both the looping and palindrome attributes. The third parameter in either case is a boolean,
which is used to toggle the attributes on or off. For palindrome looping to work, both normal looping and
palindrome looping have to be enabled.
case IDM_PALINDROME:

 MCDoAction (mcController, mcActionSetLooping, (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);
To query the state of the looping attributes, you can call MCGetControllerInfo and then examine the
variable it fills with the attribute flags discussed above.

Turning the sound off involves using MCDoAction to retrieve the volume value, negating it, then using
MCDoAction again reset it to the negative value. To turn it back on, we retrieve the value and reset the
absolute value of it.
case IDM_SOUND:
 {
 SFIXED sfxVolume;
 if (bSoundEnabled == FALSE)
 {
 // Restore the sound
 MCDoAction (mcController, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = abs (sfxVolume);
 MCDoAction (mcController, mcActionSetVolume, (LPVOID) sfxVolume);
 bSoundEnabled = TRUE;
 }
 else
 {
 // Mute the sound
 MCDoAction (mcController, mcActionGetVolume, (LPVOID) &sfxVolume);
 sfxVolume = -(abs (sfxVolume));
 MCDoAction (mcController, mcActionSetVolume, (LPVOID) sfxVolume);
 bSoundEnabled = FALSE;
 }
 }
 break;

6. Using MCSetVisible
Setting the visibility attribute of a movie controller does not require MCDoAction. Rather it uses the
function MCSetVisible, which takes the controller object and a TRUE or FALSE second parameter to either
show or hide it:
MovieController mcController;
BOOL bState;
·
·
MCSetVisible (mcController, bState);
As noted in the overview, you can hide or restore an existing movie controller to view at any time. You can
also specify that it be hidden when created (using the controller creation flags discussed earlier), and then
later change its visibility attribute by calling MCSetVisible with a value of TRUE.

7. Badges
When a movie controller is made invisible, a badge can appear on the face of its associated movie to
distinguish it from other types of graphic objects. The ability to display a badge is an attribute set at
creation time with the controller creation flag mcWithBadge or later with MCDoAction. If this attribute is
not set, no badge will appear. BIGEIGHT sets the badge attribute when it creates its controller:
Movie mMovie;
MovieController mcController;
RECT rcMovie;
·
·
mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit + mcWithBadge, hWnd);
Clicking on a badge will hide it and display the movie controller, providing that the mcWithBadge flag is
set.

If you want to manipulate a badge manually, MCDrawBadge is available. Assuming you do not set the
mcWithBadge flag, you must be prepared to call this function whenever you want the badge to appear.
Since playing the movie will automatically write over an existing badge, there is no specific QuickTime for
Windows routine to hide a badge. MCDrawBadge does not set the mcWithBadge flag.

The second parameter of MCDrawBadge should always be NULL in this version of QuickTime for
Windows. The third is the address of a handle to the badge region (a standard Windows HRGN)
subsequently available to your program. QuickTime for Windows creates a region describing the area in
which it drew the badge, and returns that region to you. It is your responsibility to later delete this region.
MovieController mcController;
HRGN hrgnBadge;
·
·
MCDrawBadge (mcController, NULL, &hrgnBadge);
A badge is a movie controller attribute even though it is a separate visual object. This assertion is
supported by the fact that its availability can be set and queried with MCDoAction, and also at controller
creation time along with other attributes.

8. Running BIGEIGHT.EXE
The first thing you see when you run BIGEIGHT is a movie positioned near the center of its client area.
The program's single menu item allows access to options which toggle various attributes of the movie
controller. For example, selecting Hide Controller makes the entire movie controller invisible. Clicking
Hide Step Buttons, Hide Speaker Button or Hide Grow Box removes these elements from the
controller. The other options are equally self-explanatory, and it is a good idea to play around with them to
see how they work.

E. FILTERS - Using Action Filters
1. Introduction
2. The FILTERS Source Code
3. Declaring an Action Filter
4. Setting an Action Filter
5. Defining an Action Filter

1. Introduction
Action filters are the means by which you can customize movie controller behavior. When you set a filter,
all subsequent MCDoAction calls will immediately call your filter function, giving you first crack at handling
the action specified by MCDoAction. In Windows terms, you are essentially subclassing a movie
controller. Additionally, your filter can tell MCDoAction to return immediately or pass the action through to
the controller for normal processing.

FILTERS.EXE intercepts incoming movie controller bounds rectangle change messages (resulting, for
example, from dragging the grow box) and then resizes the movie rectangle proportionately, i.e.
preserving the original aspect ratio. The resulting bounds rectangle is scaled proportionately, adjusting the
height to match the width to which it has been dragged.

2. The FILTERS Source Code

FILTERS.MAK

ALL : FILTERS.EXE

FILTERS.OBJ : FILTERS.C
 cl -c -AS -DSTRICT -G2 -GA -GEs -Zpel -W3 -WX -Od filters.c

FILTERS.EXE : FILTERS.OBJ FILTERS.DEF
 link /nod /a:16 filters, filters.exe, nul, qtw libw slibcew, \
 filters.def;
 rc filters.exe

FILTERS.DEF

NAME FILTERS
DESCRIPTION 'Sample Application'
EXETYPE WINDOWS
STUB 'winstub.exe'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 16384

FILTERS.C

#include <windows.h>
#include <qtw.h>

long FAR PASCAL __export WndProc (HWND, UINT, WPARAM, LPARAM);
BOOL CALLBACK __export TestFilter (MovieController, UINT,
 LPVOID, LONG);

MovieController mcController;
RECT rcNorm;
SHORT sMCHeight;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {
 static char szAppName[] = "Filters";
 HWND hWnd;
 MSG msg;
 WNDCLASS wndclass;
 MovieFile mfMovie;
 RECT rcMovie;
 Movie mMovie;

// Establish links to QuickTime for Windows
 if (QTInitialize (NULL))
 {
 MessageBox (NULL, "QTInitialize failure", szAppName, MB_OK);

 return 0;
 }
// Allocate memory required for playing movies
 if (EnterMovies ())
 {
 MessageBox (NULL, "EnterMovies failure", szAppName, MB_OK);
 return 0;
 }
// Register and create main window
 if (!hPrevInstance)
 {
 wndclass.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
 wndclass.lpszMenuName = NULL;
 wndclass.lpszClassName = szAppName;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, "RegisterClass failure", szAppName, MB_OK);
 return 0;
 }
 }
 hWnd = CreateWindow(szAppName, szAppName, WS_OVERLAPPEDWINDOW |
 WS_CLIPCHILDREN, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);
 if (hWnd == NULL)
 {
 MessageBox (NULL, "CreateWindow failure", szAppName, MB_OK);
 return 0;
 }
// Instantiate the movie
 if (OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ) != noErr)
 {
 MessageBox (NULL, "OpenMovieFile failure", szAppName, MB_OK);
 return 0;
 }
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
 CloseMovieFile (mfMovie);
// Get the normal movie dimensions. We'll use these as the
// movie aspect ratio in the filter
 GetMovieBox (mMovie, &rcNorm);
 OffsetRect (&rcNorm, -rcNorm.left, -rcNorm.top);
// Build the movie rectangle
 GetClientRect (hWnd, &rcMovie);
 rcMovie.top = (rcMovie.bottom / 3) - (rcNorm.bottom / 2);
 rcMovie.bottom = rcMovie.top + rcNorm.bottom;
 rcMovie.left = (rcMovie.right / 3) - (rcNorm.right / 2);
 rcMovie.right = rcMovie.left + rcNorm.right;
// Instantiate the movie controller
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit + mcWithBadge, hWnd);
// Make the movie paused initially

 MCDoAction (mcController, mcActionPlay, 0);
// Calculate the controller height for use in filter
 MCGetControllerBoundsRect (mcController, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);
 sMCHeight = rcMovie.bottom - rcNorm.bottom;
// Set an action filter, passing in the parent window handle
 MCSetActionFilterMCSetActionFilter (mcController, TestFilter, (LONG)
((LPVOID) hWnd));
// Enable the keyboard interface
 MCDoAction (mcController, mcActionSetKeysEnabled, (LPVOID) TRUE);
// Make the movie active
 SetMovieActive (mMovie, TRUE);
// Make the main window visible
 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);
// Play the movie
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
// Destroy the movie controller
 DisposeMovieController (mcController);
// Destroy the movie
 DisposeMovie (mMovie);
// Cut the connections to QuickTime for Windows
 ExitMovies ();
 QTTerminate ();
// Return to Windows
 return msg.wParam;
 }
long FAR PASCAL WndProc (HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
 {
 PAINTSTRUCT ps;
// Drive the movie controller
 if (MCIsPlayerMessage (mcController, hWnd, message, wParam, lParam))
 return 0;
// Process the windows message
 switch (message)
 {
 case WM_PAINT:
 if (!BeginPaint (hWnd, &ps))
 return 0;
 EndPaint (hWnd, &ps);
 return 0;
 case WM_DESTROY:
 PostQuitMessage (0);
 return 0;
 }
// Return to Windows
 return DefWindowProc (hWnd, message, wParam, lParam);
 }

BOOL CALLBACK __export TestFilter (MovieController mcCaller,
 UINT uAction, LPVOID lpParam, LONG refcon)
 {

 RECT rcBounds;
 static BOOL bBlock;

// Don't want to recursively call ourselves
 if (bBlock)
 return FALSE;
// Respond to mcAction
 switch (uAction)
 {
 case mcActionControllerSizeChanged:
 // Force a paint of the old client rectangle
 InvalidateRect ((HWND) refcon, NULL, TRUE);
 MCGetControllerBoundsRect (mcCaller, &rcBounds);
 // Calculate new bounds rect bottom
 rcBounds.bottom =
 rcBounds.top + MulDiv (rcBounds.right - rcBounds.left,
 rcNorm.bottom, rcNorm.right);
 // Add the controller height back in
 rcBounds.bottom += sMCHeight;
 bBlock = TRUE;
 MCSetControllerBoundsRect (mcCaller, &rcBounds);
 bBlock = FALSE;
 return TRUE;
 default:
 return FALSE;
 }
 }

3. Declaring an Action Filter
Each movie controller in your program can have a unique action filter, but only one at a time. To be used
successfully, an action filter must meet certain criteria:

· It must be a callback function

· It must be explicitly exported

· It must use a defined parameter list.

FILTERS uses an action filter named TestFilter:

BOOL CALLBACK __export TestFilter (MovieController, UINT FAR *,
 LPVOID, LONG);
Like normal window or dialog procedures, it is declared as CALLBACK. It returns a boolean value denoting
whether the action passed to it by MCDoAction should be processed normally when the filter returns
(FALSE), or if MCDoAction should itself return at that point (TRUE).

The filter's first argument is the related movie controller object. Its second is the address of the mcAction
item currently being handled by MCDoAction. The third is an additional value dependent on the second.
Fourth is a variable for passing additional data to the filter. The first three arguments are essentially a
pass-through of the parameters passed to MCDoAction when it was called.

4. Setting an Action Filter
The routine used to set an action filter is MCSetActionFilter:
HANDLE hInst;
MovieController mcController;
·
·
MCSetActionFilter (mcController, TestFilter, 0L);
You can set a new action filter at any time in your program. If you want to remove a filter, you must call
MCSetActionFilter with a NULL filter parameter:

HANDLE hInst;
MovieController mcController;
·
·
MCSetActionFilter (mcController, (MCActionFilter) NULL, 0L);
Although not demonstrated above, the last parameter can be used to pass data such as a window handle
or the address of a structure with useful information for the action filter. Filter functions may be defined in
any of your application's modules, either the executable itself or a library.

5. Defining an Action Filter
The action filter used by FILTERS traps dragging the grow box. If you wished, you could code cases for
all of the possible mcActions and create unusual behavior for each. The filter would still function normally,
although your movie might not perform as well as expected. In other words, if your program needs a filter,
be sure to plan carefully for all of the extra processing that will be involved.

The basic layout of a filter is similar to a window procedure. One difference to note is that the action
parameter is actually the address of the action item.
BOOL CALLBACK __export TestFilter (MovieController mcCaller,
 UINT uAction, LPVOID lpParam, LONG lRefCon)
 {
 switch (uAction)
 {
 /* cases */
 }
 return FALSE;
 }
Each of your cases should return TRUE or FALSE when its processing is finished. Good QuickTime for
Windows style specifies that the default return value be FALSE, causing the action to be handled normally
by the movie controller if the filter didn't process anything. You should also note that you can dynamically
change the action your filter is switching on, since you have received its address. This flexibility can be
advantageous when you want to fall through to normal processing with a new mcAction:
switch (uAction)
 {
 case mcActionControllerSizeChanged:

 uAction = mcActionBadgeClick;
 return FALSE;
 ·
 ·
 }
The case TestFilter deals with is resizing the bounds rectangle if the grow box is dragged. This
causes QuickTime for Windows to generate a MCDoAction all with an mcAction of
mcActionControllerSizeChanged. The third parameter, lParam, has no bearing on this particular action
and is not handled. TestFilter's last argument, lRefCon, receives the application's parent window
handle so the filter can call InvalidateRect.
case mcActionControllerSizeChanged:
// Force a paint of the old client rectangle
 InvalidateRect ((HWND) refcon, NULL, TRUE);
 MCGetControllerBoundsRect (mcCaller, &rcBounds);
// Calculate new bounds rect bottom
 rcBounds.bottom =
 rcBounds.top + MulDiv (rcBounds.right - rcBounds.left,
 rcNorm.bottom, rcNorm.right);
// Add the controller height back in
 rcBounds.bottom += sMCHeight;
 bBlock = TRUE;
 MCSetControllerBoundsRect (mcCaller, &rcBounds);
 bBlock = FALSE;
 return TRUE;
When our grow box is dragged and released, QuickTime for Windows recalculates the controller's bounds

rectangle. In this simplified example, we first ensure that no garbage is left on the screen by calling
InvalidateRect. We then retrieve the new rectangle with MCGetControllerBoundsRect. After
subtracting the height of the movie controller derived in WinMain, we calculate a new depth for our movie
based on its new width. The effect is to vary the height to preserve the original aspect ratio of the movie.
Calling MCSetControllerBoundsRect displays the adjusted rectangle.

In general, if your application contains a movie controller with a grow box, you should use a filter to let the
program know when the controller's size or position changes, since the program has no other way of
knowing when this happens (you may have observed the consequences in BIGEIGHT). By providing such
a filter, you can allow, say, a word processor to flow its text around a redimensioned movie, or simply let a
program such as FILTERS clean up after itself.

A. QuickTime for Windows API - Functions
AddTime
ClearMoviesStickyError
CloseMovieFile
ClosePictureFile
ConvertTimeScale
CountUserDataType
CoverProc
DeleteMovieFile
DisposeMovie
DisposeMovieController
DisposePicture
DrawPicture
DrawPictureFile
EnterMovies
ExitMovies
GetMovieActive
GetMovieActiveSegment
GetMovieBox
GetMovieCreationTime
GetMovieDataSize
GetMovieDuration
GetMovieModificationTime
GetMoviePict
GetMoviePosterPict
GetMoviePosterTime
GetMoviePreferredRate
GetMoviePreferredVolume
GetMoviesError
GetMoviesStickyError
GetMovieStatus
GetMovieTime
GetMovieTimeScale
GetMovieUserData
GetNextUserDataType
GetPictureFileHeader
GetPictureFileInfo
GetPictureFromFile
GetPictureInfo
GetPicturePalette
GetSoundInfo
GetUserData
GetUserDataText
GetVideoInfo
KillPicture
MAKELFIXED
MAKESFIXED
MCActionFilter
MCActivate
MCDoAction
MCDoAction mcActionActivate
MCDoAction mcActionBadgeClick
MCDoAction mcActionControllerSizeChanged

MCDoAction mcActionDeactivate
MCDoAction mcActionDraw
MCDoAction mcActionGetFlags
MCDoAction mcActionGetKeysEnabled
MCDoAction mcActionGetLooping
MCDoAction mcActionGetLoopIsPalindrome
MCDoAction mcActionGetPlayEveryFrame
MCDoAction mcActionGetPlayRate
MCDoAction mcActionGetPlaySelection
MCDoAction mcActionGetUseBadge
MCDoAction mcActionGetVolume
MCDoAction mcActionGoToTime
MCDoAction mcActionIdle
MCDoAction mcActionKey
MCDoAction mcActionPlay
MCDoAction mcActionSetFlags
MCDoAction mcActionSetGrowBoxBounds
MCDoAction mcActionSetKeysEnabled
MCDoAction mcActionSetLooping
MCDoAction mcActionSetLoopIsPalindrome
MCDoAction mcActionSetPlayEveryFrame
MCDoAction mcActionSetPlaySelection
MCDoAction mcActionSetSelectionBegin
MCDoAction mcActionSetSelectionDuration
MCDoAction mcActionSetUseBadge
MCDoAction mcActionSetVolume
MCDoAction mcActionStep
MCDraw
MCDrawBadge
MCGetControllerBoundsRect
MCGetControllerInfo
MCGetCurrentTime
MCGetMovie
MCGetVisible
MCIdle
MCIsControllerAttached
MCIsPlayerMessage
MCKey
MCNewAttachedController
MCPositionController
MCSetActionFilter
MCSetControllerAttached
MCSetControllerBoundsRect
MCSetMovie
MCSetVisible
NewMovieController
NewMovieFromDataFork
NewMovieFromFile
NormalizeRect
OpenMovieFile
OpenPictureFile
PictureToDIB
PrerollMovie
PtInMovie
QTFOURCC
QTInitialize

QTTerminate
SetMovieActive
SetMovieCoverProcs
SubtractTime
UpdateMovie

AddTime
Syntax VOID AddTime (TimeRecord FAR *lptrDst, const TimeRecord FAR

*lptrSrc)

AddTime adds two time records together, replacing the first with the result. A
TimeRecord is a structure that references a particular point in a movie, or a duration
within a movie.

Parameters TimeRecord FAR *lptrDst
The address of a time record containing the first operand for the addition. The
TimeRecord referenced is overwritten by the result of the addition.

const TimeRecord FAR *lptrSrc
The address of a time record containing the second operand for the addition. The
TimeRecord referenced remains unmodified by the operation.

Return None. The result is placed in the time record referenced by the first parameter. Use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments If the time records contain different time scales, AddTime converts them as
appropriate.

Example
MovieController mcController;
TimeRecord trOne, trTwo;
·
·
AddTime (&trOne, &trTwo);
MCDoAction (mcController, mcActionGoToTime, (LPVOID) &trOne);

See Also:

Functions ConvertTimeScale, GetMovieTimeScale, SubtractTime, GetMoviesError,
GetMoviesStickyError

MCDoAction mcActionGoToTime

Data Types TimeRecord, TimeValue

ClearMoviesStickyError
Syntax VOID ClearMoviesStickyError (VOID)

ClearMoviesStickyError clears the sticky error value. The sticky error value is
the first non-zero error code returned by an eligible QuickTime for Windows routine
since ClearMoviesStickyError was last called. Eligible QuickTime for Windows
routines operate on movies (as opposed to movie controllers) and require a movie
object.

Parameters This routine takes no parameters.

Return None.

Comments A result code is not placed into the sticky error value until the field has been cleared.
Your application should clear the sticky error value when necessary to ensure that it
does not contain a stale result code.

Example
Movie mMovie;
LFIXED lfxRate;
 ·
 ·
// Assume call produces an error code

 lfxRate = GetMoviePreferredRate (mMovie);

// Assume other calls follow with no errors
 ·
 ·
 if (GetMoviesStickyError())
 {
 MessageBox (NULL, "GetMoviePreferredRate Failure",
 "Program", MB_OK);
 ClearMoviesStickyError ();
 }

See Also:

Functions GetMoviesError, GetMoviesStickyError

CloseMovieFile
Syntax OSErr CloseMovieFile (MovieFile mfMovie)

CloseMovieFile closes an open movie file.

Parameters MovieFile mfMovie
The reference value assigned by OpenMovieFile.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can also use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

Comments It is good QuickTime for Windows programming style to close an opened movie file at
the first opportunity, e.g. once the movie object has been extracted.

Example
MovieFile mfMovie;
Movie mMovie;

·
·
OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);

See Also:

Functions OpenMovieFile, GetMoviesError, GetMoviesStickyError

ClosePictureFile
Syntax OSErr ClosePictureFile (PicFile pfPicture)

ClosePictureFile closes an open picture file.

Parameters PicFile pfPicture
The reference value assigned by OpenPictureFile.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can also use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

Comments It is good QuickTime for Windows programming style to close an opened picture file at
the first opportunity, e.g. once the necessary data has been extracted.

Example
PicFile pfPicture;
·
·
if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 /* Inform user of failure. */
 }
·
·
ClosePictureFile (pfPicture);

See Also:

Functions OpenPictureFile, GetMoviesError, GetMoviesStickyError

ConvertTimeScale
Syntax VOID ConvertTimeScale (TimeRecord FAR *lptrInout, TimeScale

tsNewScale)

ConvertTimeScale converts a time from one time scale into a time relative to
another time scale.

Parameters TimeRecord FAR *lptrInout
A pointer to a TimeRecord which you must populate with the TimeValue and the
TimeScale you wish to convert.

TimeScale tsNewScale
The TimeScale to which you wish to convert.

Return None. The TimeRecord referenced by the first parameter is overwritten with the
converted TimeValue and TimeScale values that were the basis of the conversion.
Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The time coordinate system contains a time scale scored in time units. The number of
units that pass per second quantifies the scale: a time scale of 26 means that 26 units
pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as a number of
time units. Particular points in a movie can be identified by a time value, which is the
number of time units to that point from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to
compare TimeValues between different movies.

Example
Movie mMovieA, MovieB;
TimeRecord trRecord;
·
·
// Convert a TimeValue in Movie A to its TimeValue in Movie B

 trRecord.value.dwLo = GetMoviePosterTime (mMovieA);
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovieA);
 ConvertTimeScale (&trRecord, GetMovieTimeScale (mMovieB));

See Also:

Functions GetMovieDuration, GetMovieTimeScale, MCGetCurrentTime, GetMoviesError,
GetMoviesStickyError

Data Types TimeRecord, TimeValue

CountUserDataType
Syntax LONG CountUserDataType (UserData udData, OSType ostType)

CountUserDataType determines the number of items of a given type in a user data
list.

Parameters UserData udData
The handle to the user data list.

OSType ostType
The user data type.

Return The number of items of the specified type in the user data list. You can use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain items of
various types. A common type is text containing copyright data, names of people
involved in the movie's production, special hardware and software requirements, and
other types of information about the movie. By convention, text user data types start
with a "Ó" symbol.

Example See the example in the description of GetUserDataText.

See Also:

Functions GetMovieUserData, GetNextUserDataType, GetUserData, GetUserDataText,
GetMoviesError, GetMoviesStickyError

Data Types UserData, OSType

CoverProc
Syntax OSErr CALLBACK CoverProc (Movie mMovie, HDC hdc, LONG lID)

CoverProc is the prototype for the cover (or uncover) procedure set by the routine
SetMovieCoverProcs. It shows the parameters you must pass to your cover procedure,
and the value the procedure must return.

Parameters Movie mMovie
The movie object.

HDC hdc
The handle to a device context, whose clipping region is preset to the area being
covered or uncovered.

LONG lID
The reference constant supplied in the SetMovieCoverProcs call. You can use this
value to allow a single cover procedure to handle multiple cases.

Return Your cover procedure should return noErr if it does not detect an error. Otherwise,
return one of the values defined in Appendix A.

Comments CoverProc is not a defined QuickTime for Windows function. It is a prototype only,

used as a template for your cover procedures.

Example
OSErr CALLBACK __export MyCoverProc (Movie, HDC, LONG);
·
·
HWND hWnd;
Movie mMovie;
·
·
SetMovieCoverProcs (mMovie, MyCoverProc, NULL, 5879);
·
·
OSErr CALLBACK __export MyCoverProc (Movie m, HDC hdc, lID)
 {
 RECT rcClip;
 GetClipBox (hdc, &rcClip);
 FillRect (hdc, &rcClip, GetStockObject (WHITE_BRUSH));
 return 0;
 }

See Also:

Functions SetMovieCoverProcs

DeleteMovieFile
Syntax OSErr DeleteMovieFile (LPCSTR lpstrFileSpec)

DeleteMovieFile deletes a movie file.

Parameters LPCSTR lpstrFileSpec
The name of the movie file, including the extension (.MOV).

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can also use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

Comments Physically deletes a movie file from the disk media.

Example
DeleteMovieFile ("NEWSREEL.MOV");

See Also:

Functions OpenMovieFile, CloseMovieFile, GetMoviesError, GetMoviesStickyError

DisposeMovie
Syntax VOID DisposeMovie (Movie mMovie)

DisposeMovie frees any memory being used by a movie. Your program should call
this routine when it is done working with a movie.

Parameters Movie mMovie
The movie object whose memory is being released.

Return None. Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments DisposeMovie must be called, ultimately, for each movie instantiated by your
program. It does not affect the DOS file containing the movie or the movie controller to
which it may be attached.

Example
Movie mMovie;
MovieFile mfMovie;
·
·
OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);
CloseMovieFile (mfMovie);
·
·
DisposeMovie (mMovie);

See Also:

Functions NewMovieFromFile, DisposeMovieController, GetMoviesError,
GetMoviesStickyError

DisposeMovieController
Syntax VOID DisposeMovieController (MovieController mcController)

DisposeMovieController destroys a movie controller.

Parameters MovieController mcController
The movie controller object being destroyed.

Return None.

Comments DisposeMovieController must be called, ultimately, for every movie controller
created by your program. This function does not affect any movie associated with the
controller being destroyed.

Example
MovieController mcController;
Movie mMovie;
RECT rcMovie;
HWND hWnd;
·
·

mcController = NewMovieController (mMovie, &rcMovie,
mcTopLeftMovie, hWnd);

·
·
DisposeMovieController (mcController);

See Also:

Functions NewMovieController, DisposeMovie

DisposePicture
Syntax VOID DisposePicture (PicHandle phPicture)

DisposePicture frees any memory being used by a QuickTime for Windows picture.
Your program should call this routine when it is done working with a QuickTime for
Windows picture.

Parameters PicHandle phPicture
The picture object whose memory is being released.

Return None. Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments Either KillPicture or DisposePicture must be called, ultimately, for each picture
instantiated by your program. It does not affect the DOS file containing the picture.

Example
PicHandle phPicture;
PicFile pfPicture;
·
·
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
·
·
DisposePicture (phPicture);

See Also:

Functions GetPictureFromFile, OpenPictureFile, ClosePictureFile, KillPicture,
GetMoviesError, GetMoviesStickyError

DrawPicture
Syntax OSErr DrawPicture (HDC hdc, PicHandle phThePict, const LPRECT

lprcFrame, ProgressProcRecordPtr pprpProgressProc))

DrawPicture draws a picture in the QuickTime for Windows format.

Parameters HDC hdc
The handle to the device context.

PicHandle phThePict
The picture object.

const LPRECT lprcFrame
The address of a rectangle in which the picture is to be drawn (in client area
coordinates).

ProgressProcRecordPtr pprpProgressProc
Reserved. Should be coded as NULL.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can also use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

Comments A picture is a still image held in memory (e.g. a frame from a movie), in a format
usable by QuickTime for Windows. A PicHandle is an object reference to this type of
image, obtained by a call such as GetMoviePict (see the description of this routine).
The picture object must be freed when you are done with it. Note: All QuickTime for
Windows routines referencing a RECT or POINT assume client device coordinates.

Example
Movie mMovie;
MovieController mcController;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
TimeValue tvTime;
·
·
// Retrieve last movie frame, display it at different location

 tvTime = GetMovieDuration (mMovie);
 if ((phPicture = GetMoviePict (mMovie, tvTime)) != NULL)
 DrawPicture (hdc, phPicture, &rcPicture, NULL);
·
·
// Don't forget to free the picture object

 DisposePicture (phPicture);

See Also:

Functions GetMoviePict, PictureToDIB, GetMoviesError, GetMoviesStickyError

DataTypes PicHandle

DrawPictureFile
Syntax OSErr DrawPictureFile (HDC hdc, PicFile pfPicture, const LPRECT

lprcFrame, ProgressProcRecordPtr pprpProgressProc)

DrawPictureFile draws an image from the specified picture file.

Parameters HDC hdc
A handle to the device context.

PicFile pfPicture
The picture file reference value returned by OpenPictureFile.

const LPRECT lprcFrame
A pointer to a rectangle where the picture is to be drawn (in client area coordinates).

ProgressProcRecordPtr pprpProgressProc
Reserved. Should be coded as NULL.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can also use GetMoviesError and GetMoviesStickyError to test
for failure of this call.

Comments This function is essentially the same as the DrawPicture function, except that it reads
the picture from disk. Picture files are characterized by the DOS file suffix ".PIC", and
are DOS versions of Macintosh PICT and JFIF files. Note: All QuickTime for Windows
routines referencing a RECT or POINT assume client device coordinates.

Example
PicFile pfPicture;
RECT rcPict;
HDC hdc;
·
·
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
DrawPictureFile (hdc, pfPicture, &rcPict, NULL);
ClosePictureFile (pfPicture);

See Also:

Functions ClosePictureFile, DrawPicture, GetPictureFileInfo, GetPictureInfo,
GetMoviesError, GetMoviesStickyError, OpenPictureFile

EnterMovies
Syntax OSErr EnterMovies (VOID)

EnterMovies allocates memory for QuickTime for Windows to run itself.

Parameters This function takes no parameters.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments EnterMovies only needs to be called once during the life of your programs that play
movies. The memory allocated is not memory used for movies, but rather for global
QuickTime for Windows activities. An application may call EnterMovies multiple
times, but storage will only be allocated the first time.

Example
if (EnterMovies() != noErr)
 {
 MessageBox (NULL, "EnterMovies failure", "WinPlay1",
 MB_OK);
 return 0;
 }

See Also:

Functions ExitMovies, QTInitialize, QTTerminate

ExitMovies
Syntax VOID ExitMovies (VOID)

ExitMovies frees memory used by QuickTime for Windows to run itself.

Parameters This routine takes no parameters.

Return None.

Comments The memory released is the global memory used by QuickTime for Windows. It is not
the memory used to store movies. QuickTime for Windows programs that do not call
EnterMovies (e.g. those that display only individual QuickTime for Windows pictures)
do not have to call ExitMovies.

Example
// Cut the connections to QuickTime for Windows

 ExitMovies ();
 QTTerminate ();

See Also:

Functions EnterMovies, QTInitialize, QTTerminate

GetMovieActive
Syntax BOOL GetMovieActive (Movie mMovie)

GetMovieActive queries the active state of a movie (whether or not it can be
played).

Parameters Movie mMovie
The movie object.

Return TRUE if the movie is active. FALSE if the movie is inactive. You can use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments A movie with an inactive state will remain visible but will not play, since it does not
receive cycles from QuickTime for Windows' scheduler while inactive.

Do not confuse a movie's active state with its playing/paused state, i.e. do not use
SetMovieActive to start or stop playing a movie. You can set a movie's active state
using SetMovieActive.

Example
Movie mMovie;
·
·
// If the movie is active, make it inactive

 if (GetMovieActive (mMovie))
 {
 SetMovieActive (mMovie, FALSE);
 }

See Also:

Functions SetMovieActive, GetMoviesError, GetMoviesStickyError

GetMovieActiveSegment
Syntax VOID GetMovieActiveSegment (Movie mMovie, TimeValue FAR *,

TimeValue FAR *)

GetMovieActiveSegment determines which segment of a movie is currently
selected for playing.

Parameters Movie mMovie
The movie object.

TimeValue FAR *tvStart
A pointer to the start time value.

TimeValue FAR *tvDuration
A pointer to the duration time value.

Return tvStart and tvDuration are populated with the starting time and the duration of
the active movie segment, respectively. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments If the active segment is the entire movie, tvStart is set to -1 and tvDuration is set
to zero.

Example
Movie mMovie;
TimeValue tvStart, tvDuration;
·
·
GetMovieActiveSegment (mMovie, &tvStart, &tvDuration);
if (tvStart == -1)
 /* Code for when entire movie is active. */
else
 /* Code for when subset of entire movie is active. */

See Also:

Functions GetMovieActive, MCDoAction, GetMoviesError, GetMoviesStickyError

MCDoAction mcActionSetSelectionBegin, mcActionSetPlaySelection,
mcActionSetSelectionDuration

GetMovieBox
Syntax VOID GetMovieBox (Movie mMovie, LPRECT lprcMovieRect)

GetMovieBox obtains the current dimensions of a movie rectangle.

Parameters Movie mMovie
The movie object.

LPRECT lprcMovieRect
The address of the movie rectangle.

Return The rectangle referenced by lprcMovieRect is populated with the movie's current
dimensions. Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The movie need not be visible on the screen for this function to provide its dimensions.
Consequently, this call is quite useful for determining the optimum rectangle for
displaying a movie when calling NewMovieController.

If the rectangle referenced by lprcMovieRect is NULL, a sound-only movie is
indicated. It is up to you to handle this condition however you wish.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume client
device coordinates.

Example
RECT rcMovie;
Movie mMovie;
MovieFile mfMovie;
MovieController mcController;
·
·
// Open the movie file

 if (OpenMovieFile ("NEWSREEL.MOV", &mfMovie, OF_READ))
 {
 MessageBox (NULL, "Open failure", ...);
 }
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL,
 newMovieActive, NULL);
 CloseMovieFile (mfMovie);

// Instantiate the movie controller

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWnd);

See Also:

Functions MCGetControllerBoundsRect, GetMoviesError, GetMoviesStickyError

GetMovieCreationTime
Syntax LONG GetMovieCreationTime (Movie mMovie)

GetMovieCreationTime retrieves a movie's creation date and time.

Parameters Movie mMovie
The movie object.

Return A LONG containing the movie's creation date and time information. You can use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The returned LONG may be decoded using the C language ctime function.

Example
LONG lDateTime;
Movie mMovie;
char buffer [80];
·
·
lDateTime = GetMovieCreationTime (mMovie);
wsprintf (buffer, "Movie created on %s", ctime (&lDateTime));

See Also:

Functions GetMovieModificationTime, GetMoviesError, GetMoviesStickyError

GetMovieDataSize
Syntax LONG GetMovieDataSize (Movie mMovie, TimeValue tvStart,

TimeValue tvDuration)

GetMovieDataSize retrieves the size, in bytes, of the data in a segment of a movie.
This size includes both video and sound data.

Parameters Movie mMovie
The movie object.

TimeValue tvStart
A time value specifying the starting point of the segment whose size is being queried.

TimeValue tvDuration
A time value specifying the duration of the segment whose size is being queried.

Return A LONG that contains the size, in bytes, of the movie's data that lies in the specified
segment. Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments This function may be called whether a movie is playing or not. Use
MCGetCurrentTime to retrieve the movie's current time.

Example
LONG lSize;
Movie mMovie;
TimeValue tvStart, tvDuration;
MovieController mcController;
·
·
// Get the number of bytes from the current position to two
// seconds later

 tvStart = MCGetCurrentTime (mcController, NULL);
 tvDuration = 2 * GetMovieTimeScale (mMovie);
 lSize = GetMovieDataSize (mMovie, tvStart, tvDuration);

See Also:

Functions ConvertTimeScale, MCGetCurrentTime, GetMoviesError, GetMoviesStickyError,
GetMovieTimeScale

Data Types TimeValue

GetMovieDuration

Syntax TimeValue GetMovieDuration (Movie mMovie)

GetMovieDuration retrieves the duration of a movie, expressed in units of the
movie's time scale.

Parameters Movie mMovie
The movie object.

Return A TimeValue containing the movie's duration, in units of the movie's time scale. Use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments QuickTime for Windows' time coordinate system uses a time scale scored in time units.
The number of units that pass per second quantifies the scale: a time scale of 26 means
that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed in the number of
time units it contains. Particular points in a movie can be identified by time values, which
are the number of time units to those points from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to compare
TimeValues between differently scaled movies.

Example
LONG lSize;
Movie mMovie;
TimeValue tvDuration;
·
·
// Get the number of bytes in this movie

 tvDuration = GetMovieDuration (mMovie);
 lSize = GetMovieDataSize (mMovie, 0, tvDuration);

See Also:

Functions ConvertTimeScale, GetMovieTimeScale, MCGetCurrentTime, GetMoviesError,
GetMoviesStickyError

Data Types TimeValue

GetMovieModificationTime
Syntax LONG GetMovieModificationTime (Movie mMovie)

GetMovieModificationTime retrieves a movie's last modification date and time.

Parameters Movie mMovie
The movie object.

Return A LONG containing the movie's last modification date and time. You can use

GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The resulting LONG may be decoded using the C language ctime function.

Example
LONG lDateTime;
Movie mMovie;
char buffer [80];
·
·
lDateTime = GetMovieModificationTime (mMovie);
sprintf (buffer, "Movie modified on %s", ctime (&lDateTime));

See Also:

Functions GetMovieCreationTime, GetMoviesError, GetMoviesStickyError

GetMoviePict
Syntax PicHandle GetMoviePict (Movie mMovie, TimeValue tvTime)

GetMoviePict retrieves an individual image from a movie in the QuickTime for
Windows picture format at a specified movie time.

Parameters Movie mMovie
The movie object.

TimeValue tvTime
The time value in the movie of the image to be retrieved.

Return A picture object. A NULL return indicates failure. You can also use GetMoviesError
and GetMoviesStickyError to test for failure of this call.

Comments This function may be called whether a movie is playing or not. The picture object
returned is unusable by Windows directly. Use the function PictureToDIB to convert
the image to a Windows Device Independent Bitmap (DIB). An alternative to
converting the image is using DrawPicture to display it at specified coordinates.

Example
Movie mMovie;
MovieController mcController;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
TimeValue tvTime;
·
·
// Retrieve last movie frame then display it on the
// screen at another location

 tvTime = GetMovieDuration (mMovie);
 if ((phPicture = GetMoviePict (mMovie, tvTime)) != NULL)

 DrawPicture (hdc, phPicture, &rcPicture, NULL);

See Also:

Functions DrawPicture, GetMoviePosterPict, MCGetCurrentTime, PictureToDIB,
GetMoviesError, GetMoviesStickyError

GetMoviePosterPict
Syntax PicHandle (Movie mMovie)

GetMoviePosterPict retrieves a movie's poster frame in the
QuickTime for Windows picture format.

Parameters Movie mMovie
The movie object.

Return A picture object. A NULL return indicates failure. You can also use GetMoviesError
and GetMoviesStickyError to test for failure of this call.

Comments This function may be called whether a movie is playing or not. The picture object
returned is unusable by Windows directly. Use the function PictureToDIB to convert it
to a Windows Device Independent Bitmap (DIB). An alternative to converting the
image is using DrawPicture to display it at specified coordinates.

Example
Movie mMovie;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
·
·
// Retrieve Poster Frame, then display it on the screen

 if ((phPicture = GetMoviePosterPict (mMovie)) != NULL)
 DrawPicture
 (hdc, phPicture, &rcPicture, NULL);

See Also:

Functions DrawPicture, GetMoviePict, GetMoviePosterTime, PictureToDIB,
GetMoviesError, GetMoviesStickyError

GetMoviePosterTime
Syntax TimeValue GetMoviePosterTime (Movie mMovie)

GetMoviePosterTime finds the poster's time in the movie.

Parameters Movie mMovie
The movie object.

Return The TimeValue of the poster frame. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments The poster is an image from the movie which may be used to characterize it when the
movie is not running. For example, the poster might serve as a visual representation
of a movie's contents in an open dialog. To get the poster picture object itself use
GetMoviePosterPict.

Example
TimeValue tvPoster;
Movie mMovie;
·
·
tvPoster = GetMoviePosterTime (mMovie);

See Also:

Functions ConvertTimeScale, GetMovieDuration, GetMoviesError, GetMoviePosterPict,
GetMoviesStickyError, MCGetCurrentTime

Data Types TimeValue

GetMoviePreferredRate
Syntax LFIXED GetMoviePreferredRate (Movie mMovie)

GetMoviePreferredRate determines the preferred rate at which a movie is played.

Parameters Movie mMovie
The movie object.

Return An LFIXED value which is the preferred rate of the movie expressed as a multiplier of
the recorded rate. For example, a return value of 1.0 means play the movie at the
recorded rate. A return value of 1.5 would mean play the movie 1.5 times faster than
its recorded rate. Use GetMoviesError and GetMoviesStickyError to test for failure of
this call.

Comments The return value can be passed on to MCDoAction mcActionPlay to play the movie at
the preferred rate.

Example
Movie mMovie;
MovieController mcController;
LFIXED lfxRate;
·
·
// Play the movie at the preferred rate

 lfxRate = GetMoviePreferredRate (mMovie);
 MCDoAction (mcController, mcActionPlay, (LPVOID) lfxRate);

See Also:

Functions GetMoviePreferredVolume, GetMoviesError, GetMoviesStickyError

MCDoAction mcActionPlay

GetMoviePreferredVolume
Syntax SFIXED GetMoviePreferredVolume (Movie mMovie)

GetMoviePreferredVolume returns a movie's preferred volume setting.

Parameters Movie mMovie
The movie object.

Return An SFIXED value ranging from 256 to -256. Negative values represent volume levels
that play no sound but preserve the absolute value of the volume setting. Use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The return value can be passed on to MCDoAction using the action
mcActionSetVolume to play the movie at the preferred volume.

Example
Movie mMovie;
MovieController mcController;
SFIXED sfxVolume;
·
·
// Set the volume to the preferred level

 sfxVolume = GetMoviePreferredVolume (mMovie);
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);

See Also:

Functions GetMoviePreferredRate, GetMoviesError, GetMoviesStickyError

MCDoAction mcActionSetVolume

GetMoviesError
Syntax OSErr GetMoviesError (VOID)

GetMoviesError retrieves the current QuickTime for Windows movie error value
and resets it to 0.

Parameters This routine takes no parameters.

Return The result code from the previous eligible QuickTime for Windows call. Eligible
QuickTime for Windows calls are calls that operate on movies (as opposed to movie
controllers) and require a movie object.

Comments Use this call to obtain the result code for QuickTime for Windows movie calls that do
not return an error as a function result. Even if a movie routine explicitly returns an
error as a function result, the result is also available using the GetMoviesError
function. See Appendix A for error condition values.

Example
Movie mMovie;
LFIXED lfxRate;
·
·
lfxRate = GetMoviePreferredRate (mMovie);
if (GetMoviesError())
 {
 MessageBox (NULL, "GetMoviePreferredRate Failure",
 "Program", MB_OK);
 }

See Also:

Functions GetMoviesStickyError, ClearMoviesStickyError

Data Types OSErr

GetMoviesStickyError
Syntax OSErr GetMoviesStickyError (VOID)

GetMoviesStickyError retrieves the sticky error value. The sticky error value is
the first non-zero result code returned by an eligible QuickTime for Windows routine
since ClearMoviesStickyError was last called.

Parameters This routine takes no parameters.

Return The first non-zero result code from the previous eligible QuickTime for Windows calls
since the sticky error value was last cleared. Eligible QuickTime for Windows calls
operate on movies (as opposed to movie controllers) and require a movie object.

Comments Even if a movie routine explicitly returns an OSErr, the result is also available using
the GetMoviesStickyError function.

The GetMoviesStickyError function does not clear the sticky error value. Use the
ClearMoviesStickyError function for this purpose.

A result code will not be placed into the sticky error value until the field has been

cleared. Your application should clear the sticky error value to ensure that it does not
contain a stale result code.

Example
Movie mMovie;
LFIXED lfxRate;
·
·
// Assume call produces an error code

 lfxRate = GetMoviePreferredRate (mMovie);

// Assume other calls follow with no errors
·
·
 if (GetMoviesStickyError())
 {
 MessageBox (NULL, "GetMoviePreferredRate Failure",
 "Program", MB_OK);
 ClearMoviesStickyError();
 }

See Also:

Functions GetMoviesError, ClearMoviesStickyError

GetMovieStatus
Syntax OSErr GetMovieStatus (Movie mMovie, LPVOID lpvReserved)

GetMovieStatus looks for defects in a movie and returns a defined error condition if
any are found.

Parameters Movie mMovie
The movie object.

LPVOID lpvReserved
Reserved.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments Inconsistencies found in the movie data are reported.

Example
MovieFile mfMovie;
Movie mMovie;
LPVOID lpvReserved;
·
·
OpenMovieFile ("SAMPLE.MOV", &mfMovie, OF_READ);
NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);

CloseMovieFile (mfMovie);
if (GetMovieStatus (mMovie, lpvReserved))
 {
 /* Display error message. */
 }

See Also:

Functions GetMoviesError, GetMoviesStickyError

GetMovieTime
Syntax TimeValue GetMovieTime (Movie mMovie, TimeRecord FAR *trRecord)

GetMovieTime retrieves the current time of a movie at the point that the routine is called.

Parameters Movie mMovie
The movie object.

TimeRecord *trRecord
The address of a TimeRecord which will be filled with the movie's time scale, time base
and current time. The high 32 bits of the time value field are always 0, while the low 32
bits represent the same value as the returned TimeValue.

Return A TimeValue containing the movie's current time at the point the routine is called. Use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments A movie's time coordinate system is based on a time scale scored in time units. The
number of units that pass per second quantifies the scale: a time scale of 26 means that
26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as the length of the
portion of the movie in the number of time units it contains. Particular points in a movie
can be identified by a time value, which is the number of time units to that point from the
beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to compare
TimeValues between different movies.

Example
Movie mMovie;
TimeValue tvCurrentTime;
TimeRecord trTimeData;
·
·
// Get the movie's current time

 tvCurrentTime = GetMovieTime (mMovie, &trTimeData);

See Also:

Functions ConvertTimeScale, GetMovieDuration, MCGetCurrentTime, GetMovieTimeScale,

GetMoviesError, GetMoviesStickyError

Data Types TimeScale, TimeValue

GetMovieTimeScale
Syntax TimeScale GetMovieTimeScale (Movie mMovie)

GetMovieTimeScale retrieves the time scale of a movie.

Parameters Movie mMovie
The movie object.

Return The time scale of the movie, i.e. the number of time units that pass per second. Use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments A movie's time coordinate system is based on a time scale scored in time units. The
number of units that pass per second quantifies the scale: a time scale of 26 means
that 26 units pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as the length of
the portion of the movie in the number of time units it contains. Particular points in a
movie can be identified by a time value, which is the number of time units to that point
from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to compare
TimeValues between different movies.

Example
LONG lSize;
Movie mMovie;
TimeValue tvStart, tvDuration;
MovieController mcController;
·
·
// Get the number of bytes from the current position to two
// seconds later

 tvStart = MCGetCurrentTime(mcController, NULL);
 tvDuration = 2 * GetMovieTimeScale (mMovie);
 lSize = GetMovieDataSize (mMovie, tvStart, tvDuration);

See Also:

Functions ConvertTimeScale, GetMovieDuration, MCGetCurrentTime, GetMoviesError,
GetMoviesStickyError

Data Types TimeScale, TimeValue

GetMovieUserData

Syntax UserData GetMovieUserData (Movie mMovie)

GetMovieUserData retrieves a handle to a list of user data belonging to a movie.
This handle is maintained internally by QuickTime for Windows. You do not need to
free it when you are finished using it.

Parameters Movie mMovie
The movie object.

Return The handle to a list of user data. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain items of
various types. A common type is text containing copyright data, names of people
involved in the movie's production, special hardware and software requirements, and
other types of information about the movie. By convention, text user data types start
with a "Ó" symbol. A list of commonly used text user data types may be found in
Section 16 of the overview.

Example See the example in the description of GetUserDataText.

See Also:

Functions CountUserDataType, GetNextUserDataType, GetUserData, GetUserDataText,
GetMoviesError, GetMoviesStickyError

Data Types UserData

GetNextUserDataType
Syntax OSType GetNextUserDataType (UserData udData, OSType ostType)

This function is used to retrieve the next user data type in a user data list.

Parameters UserData udData
The handle to the user data list.

OSType ostType
The user data type. If zero is used, the first user data type in the list is returned. If a
user data type is used, the next user data type is returned.

Return The next user data type, or zero if no more types are present. You can use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain items of

various types. A common type is text containing copyright data, names of people
involved in the movie's production, special hardware and software requirements, and
other types of information about the movie. By convention, text user data types start
with a "Ó" symbol. A list of commonly used text user data types may be found in
Section 16 of the overview.

Example See the example in the description of GetUserDataText.

See Also:

Functions CountUserDataType, GetUserData, GetUserDataText, GetMoviesError,
GetMoviesStickyError

Data Types UserData

GetPictureFileHeader
Syntax OSErr GetPictureFileHeader (PicFile pfPicture, LPRECT lprcFrame,

OpenCPicParams FAR *lpocppHeader)

GetPictureFileHeader retrieves the header to the picture file and the picture frame
rectangle.

Parameters PicFile pfPicture
The picture file reference value returned by OpenPictureFile.

LPRECT lprcFrame
The address of the picture frame rectangle.

OpenCPicParams FAR *lpocppHeader
The address of the picture file header data.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values. The picture frame rectangle and picture file header referenced by the second
and third parameters are populated with the retrieved data. You can use GetMoviesError
and GetMoviesStickyError to test for failure of this call.

Comments Picture files are characterized by the DOS file suffix ".PIC". They are DOS versions of
Macintosh PICT and JFIF files.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume client
device coordinates.

Example
PicFile pfPicture;
OpenCPicParams ocppHeader;
RECT rcFrame;
·
·

OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
GetPictureFileHeader (pfPicture, &rcFrame, &ocppHeader);
ClosePictureFile (pfPicture);

See Also:

Functions ClosePictureFile, DrawPictureFile, GetPictureFileInfo, GetPictureInfo,
GetMoviesError, GetMoviesStickyError, OpenPictureFile

Data Types OpenCPicParams

GetPictureFileInfo
Syntax OSErr GetPictureFileInfo (PicFile pfPicture, ImageDescription FAR

*idImageInfo)

GetPictureFileInfo retrieves detailed information about a picture file.

Parameters PicFile pfPicture

The picture file reference value referred to by OpenPictureFile.

ImageDescription FAR *idImageInfo
The address of the image descriptor.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values. The image descriptor record is populated with information on the picture file. You
can use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The information retrieved by GetPictureFileInfo is more detailed than that retrieved
by GetPictureFileHeader. Picture files are characterized by the DOS file suffix ".PIC".
They are DOS versions of Macintosh PICT and JFIF files.

Example
PicFile pfPicture;
ImageDescription idImageInfo;
·
·
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
idImageInfo.idSize = sizeof (ImageDescription);
GetPictureFileInfo (pfPicture, &idImageInfo);
ClosePictureFile (pfPicture);

See Also:

 Functions ClosePictureFile, GetPictureFileHeader, GetPictureInfo, GetMoviesError,
GetMoviesStickyError, OpenPictureFile

 Data Types ImageDescription

GetPictureFromFile
Syntax PicHandle GetPictureFromFile (PicFile pfPicture)

GetPictureFromFile extracts a picture from a picture file.

Parameters PicFile pfPicture
The reference value assigned by OpenPictureFile.

Return A PicHandle for subsequently referencing the picture, NULL if failure. You can also
use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments You can use the picture object returned by GetPictureFromFile to create a
Windows Device Independent Bitmap (DIB).

Example
PicFile pfPicture;
PicHandle phThePict;
·
·
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phThePict = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }

See Also:

Functions OpenPictureFile, ClosePictureFile, GetMoviesError, GetMoviesStickyError

GetPictureInfo
Syntax OSErr GetPictureInfo (PicHandle, ImageDescription FAR *)

GetPictureInfo retrieves detailed information about an image.

Parameters PicHandle phThePict

The picture object.

ImageDescription FAR *idImageInfo
The address of the image descriptor.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. The image descriptor record referenced by the second parameter is
populated with information about the image. You can use GetMoviesError and
GetMoviesStickyError to test for failure of this call.

Comments Pictures are created using GetMoviePict, GetMoviePosterPict and
GetPictureFromFile. Note: this routine is a limited version of its Macintosh counterpart,
in that only information about the first picture is retrieved. Future releases of
QuickTime for Windows will upgrade this function.

Example
Movie mMovie;
PicHandle phThePict;
ImageDescription idImageInfo;
·
·
if ((phThePict = GetMoviePosterPict (mMovie)) != NULL)
 {
 idImageInfo.idSize = sizeof (ImageDescription);
 GetPictureInfo (phThePict, &idImageInfo);
 }

See Also:

Functions GetPictureFileHeader, GetPictureFileInfo, GetMoviePict, GetMoviePosterPict,
GetMoviesError, GetMoviesStickyError

Data Types ImageDescription

GetPicturePalette
Syntax HPALETTE GetPicturePalette (PicHandle phThePict)

GetPicturePalette retrieves a palette from a picture.

Parameters PicHandle phThePict

A picture object.

Return A handle to the picture's palette, NULL if the picture has no palette. You can use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments The returned HPALETTE can be used to display pictures using a Windows palette. You
must free it, when you are done with it, using DeleteObject.

GetPicturePalette always attempts to return a palette. If the picture does not
have one, it returns a default palette.

Example
PicFile pfPicture;
PicHandle phThePict;
HPALETTE hPal;
·
·
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phThePict = GetPictureFromFile (pfPicture);
 hPal = GetPicturePalette (phThePict);
 ClosePictureFile (pfPicture);
 }

See Also:

Functions ClosePictureFile, GetMoviesError, OpenPictureFile, GetMoviesStickyError,
GetPictureFromFile

GetSoundInfo
Syntax OSErr GetSoundInfo (Movie, SoundDescription FAR *)

GetSoundInfo retrieves information about a movie's sound.

Parameters Movie mMovie
The movie object.

SoundDescription FAR *sdSoundInfo
The address of the sound description data.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. The sound description record is populated with data about the
movie's sound. You can use the routines GetMoviesError and GetMoviesStickyError
to test for failure of this call.

Comments GetSoundInfo retrieves useful information about a movie's sound, such as number
of channels, sample size and sampling rate. Note: this routine is a limited version of
its Macintosh counterpart, in that only information about the first track is retrieved
(tracks are not meaningful under QuickTime for Windows). Future releases of

QuickTime for Windows will upgrade this function.

Example
Movie mMovie;
SoundDescription sdSoundInfo;
·
·
sdSoundInfo.descSize = sizeof (SoundDescription);
GetSoundInfo (mMovie, &sdSoundInfo);
if ((SHORT) sdSoundInfo.numChannels == 1)
 {
 /* Tell user sound is mono. */
 }

See Also:

 Functions GetVideoInfo, GetMoviesError, GetMoviesStickyError

 Data Types SoundDescription

GetUserData
Syntax OSErr GetUserData (UserData udData, LPHANDLE lphData, OSType

ostType, LONG lIndex, LPLONG lplSize)

GetUserData retrieves data from an item in a user data list.

Parameters UserData udData
The handle to the user data list.

LPHANDLE lphData
A handle for a block memory that will receive the requested data. This function will
reallocate this memory to accommodate the data, if necessary.

OSType ostType
The user data type.

LONG lIndex
Each user data item is identified by a unique index value. Index values are assigned
sequentially within a user data type starting with 1.

LPLONG lplSize
The size of the data returned.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use the routines GetMoviesError and GetMoviesStickyError
to test for failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain items of
various types. A common type is text containing copyright data, names of people
involved in the movie's production, special hardware and software requirements, and
other types of information about the movie. By convention, text user data types start
with a "Ó" symbol. A list of commonly used text user data types may be found in
Section 16 of the overview.

Example See the example in the description of GetUserDataText.

See Also:

 Functions CountUserDataType, GetMovieUserData, GetUserDataText,
GetNextUserDataType, GetMoviesError, GetMoviesStickyError

 Data Types UserData

GetUserDataText
Syntax OSErr GetUserDataText (UserData udData, LPHANDLE lphData, OSType

ostType, LONG lIndex, UINT uRegionTag, LPLONG lplSize)

GetUserDataText retrieves text from an item in a user data list. Each user data text
item may have alternative text. For example, multiple languages may be supported. Each
alternative text value is identified by a region code. A table of these codes is provided in
Appendix B.

Parameters UserData udData
The handle to the user data list.

LPHANDLE lphData
A handle for a block memory that will receive the requested data. This function will
reallocate this memory to accommodate the data, if necessary.

OSType ostType
The user data type.

LONG lIndex
Each user data item is identified by a unique index value. Index values are assigned
sequentially within a user data type starting with 1.

UINT uRegionTag
A region tag that may identify alternate text. A table of these codes is provided in
Appendix B.

LPLONG lplSize
The size of the text value returned.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values. You can use the routines GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments A movie's user data list is placed in a movie by its creator and may contain items of
various types. A common type is text containing copyright data, names of people involved
in the movie's production, special hardware and software requirements, and other types
of information about the movie. By convention, text user data types start with a "Ó"
symbol. A list of commonly used text user data types may be found in Section 16 of the
overview.

Example
// A function that steps through the user data list

void CheckUserDataFunctions (Movie mCheck, UINT uRegionTag)
 {
 UserData udMovie;
 OSType osType;
 LONG lUserDataCount;
 LONG i;
 LONG lByteCount;
 HGLOBAL hgMem;
 char szText [256];
 LPSTR lpszText;

// Get the user data handle

 udMovie = GetMovieUserData (mCheck);

// Allocate memory - note 128 is arbitrary amount

 hgMem = GlobalAlloc (GMEM_MOVEABLE, 128);

// Find the first user data type

 osType = GetNextUserDataType (udMovie, 0);

// Parse the user data list

 while (osType != 0)
 {
 lUserDataCount = CountUserDataType (udMovie, osType);
 for (i = 1; i <= lUserDataCount; i++)
 {
 if (GetUserDataText (udMovie, &hgMem, osType, i,
 uRegionTag, &lByteCount) == 0)
 {
 lpszText = (LPSTR) GlobalLock (hgMem);
 lpszText [lByteCount] = '\0';
 /* Display the text. */
 wsprintf (szText, "User Data of Type: %ld/%ld/%s",
 osType, i, lpszText);

 GlobalUnlock (hgMem);
 }
 }
 osType = GetNextUserDataType (udMovie, osType);
 }

// The program must free the memory

 GlobalFree (hgMem);
 }

See Also:

 Functions CountUserDataType, GetMovieUserData, GetUserData, GetNextUserDataType,
GetMoviesError , GetMoviesStickyError

 Data Types UserData, OSType

GetVideoInfo
Syntax OSErr GetVideoInfo (Movie mMovie, ImageDescription FAR *)

GetVideoInfo retrieves information about a movie's video.

Parameters Movie mMovie
The movie object.

ImageDescription FAR *idVideoInfo
The address of the image description data.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. The image description data is populated with information about the
movie's video data. Use GetMoviesError and GetMoviesStickyError to test for failure
of this call.

Comments GetVideoInfo retrieves useful information about a movie's video, such as horizontal
and vertical resolution, frame count and compressor type.

Note: this routine is a limited version of its Macintosh counterpart, in that only
information about the first track is retrieved (tracks are not meaningful under
QuickTime for Windows). Future releases of QuickTime for Windows will upgrade this
function.

Example
Movie mMovie;
PicHandle phThePict;
ImageDescription idVideoInfo;
·
·
idVideoInfo.idSize = sizeof (ImageDescription);
GetVideoInfo (mMovie, &idVideoInfo);

See Also:

Functions GetSoundInfo, GetPictureInfo, GetMoviesError, GetMoviesStickyError

Data Types ImageDescription

KillPicture
Syntax VOID KillPicture (PicHandle phPicture)

KillPicture frees any memory being used by a QuickTime for Windows picture. Your
program should call this routine when it is done working with a QuickTime for Windows
picture.

Parameters PicHandle phPicture
The picture object whose memory is being released.

Return None. Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments Either KillPicture or DisposePicture must be called, ultimately, for each picture
instantiated by your program. It does not affect the DOS file containing the picture.

Example
PicHandle phPicture;
PicFile pfPicture;
·
·
if (!OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 phPicture = GetPictureFromFile (pfPicture);
 ClosePictureFile (pfPicture);
 }
·
·
KillPicture (phPicture);

See Also:

Functions GetPictureFromFile, OpenPictureFile, ClosePictureFile, DisposePicture,
GetMoviesError, GetMoviesStickyError

MAKELFIXED
Syntax MAKELFIXED(integer, fract)

MAKELFIXED is a macro used to construct an LFIXED variable.

Parameters integer

A signed sixteen-bit value representing the integral part of the LFIXED variable.

fract

An unsigned sixteen-bit value representing the fractional part of the LFIXED variable.

Comments LFIXED variables are normally used to hold movie rates in QuickTime for Windows. For
example, the LFIXED value 0x0028000 could be used to represent a rate of 2.5.

Example
LFIXED lfxRate;

// Set the movie rate to 2.5

 lfxRate = MAKELFIXED(0x0002, 0x8000);

See Also:

Functions MAKESFIXED (macro)

Data Types LFIXED, SFIXED

MAKESFIXED
Syntax MAKESFIXED(integer, fract)

MAKESFIXED is a macro used to construct an SFIXED variable.

Parameters integer

A signed eight-bit value representing the integral part of the SFIXED variable.

fract

An unsigned eight-bit value representing the fractional part of the SFIXED variable.

Comments SFIXED variables are normally used to hold movie sound track volumes in QuickTime for
Windows. For example, the SFIXED value 0x0080 could be used to represent a sound
volume of 0.5.

Example
SFIXED sfxVolume;

// Set the movie sound volume to 0.5

 sfxVolume = MAKESFIXED(0x00, 0x08);

See Also:

Functions MAKELFIXED (macro)

Data Types LFIXED, SFIXED

MCActionFilter
Syntax BOOL CALLBACK MCActionFilter (MovieController mcController, UINT

uAction, LPVOID lpParam, LONG lRefCon)

MCActionFilter is the prototype for the filter function set by the routine
MCSetActionFilter. It shows the parameters you must pass to your filter, and the value
your filter must return.

Parameters MovieController mcController
The movie controller object.

UINT uAction
The action to be filtered, which is the same as the one passed to MCDoAction.

LPVOID lpParam
The optional extra parameter that modifies the action referenced by uAction, which is
the same as the one passed to MCDoAction.

LONG lRefcon
Additional data of use to the filter when processing the action. Should be coded as 0L if
not used.

Return TRUE indicates that the movie controller doesn't have to handle the action (since your
filter has taken appropriate action), FALSE that it does.

Comments MCActionFilter is not a defined QuickTime for Windows function. It is a prototype
only, used as a template for your filter functions.

Example
BOOL CALLBACK __export MyFilter (MovieController, UINT,
 LPVOID, LONG);
·
·
BOOL CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpVoid, LONG lRefCon)
 {
 switch (uAction)
 {
 /* cases */
 }

 return FALSE;
 }

See Also:

Functions MCSetActionFilter

MCActivate
Syntax ComponentResult MCActivate (MovieController mcController, HWND

hWnd, BOOL bActivate)

MCActivate sets a movie controller's state to active or inactive.

Parameters MovieController mcController
The movie controller object.

HWND hWnd
The controller parent's window handle.

BOOL bActivate
TRUE to set the controller active. FALSE to set the controller inactive.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values.

Comments An inactive movie controller cannot receive mouse clicks and its appearance is grayed.
It can still receive keyboard input, if the keyboard interface is active. Movie controllers
are created with an active state by default.

A movie/movie controller pair can have opposing states. For example, a playing movie's
controller can be deactivated, graying it and prohibiting further mouse input, but the
movie will keep playing. In the case where the controller is active and the movie is
inactive, the movie will receive no service from the QuickTime for Windows scheduler
and will not play even though the controller is functional.

More than one movie controller can be active at a time. Both attached and detached
movie controllers can be made inactive.

There is no QuickTime for Windows function to query the active state of a movie
controller.

Example
MovieController mcController;
HWND hWndParent;
·
·
// Make the controller inactive to prevent its use

 MCActivate (mcController, hWndParent, FALSE);

See Also:

Functions GetMovieActive, SetMovieActive

MCDoAction mcActionActivate

MCDoAction
Syntax ComponentResult MCDoAction(MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction causes a movie controller perform a specified action, based on the
parameters passed to it.

Parameters MovieController mcController
The movie controller object.

UINT uAction
An action flag parameter with the prefix "mcAction...". Each action flag parameter is
documented in detail in the following pages.

LPVOID lpvParams
A modifier of the uAction parameter.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments MCDoAction is a powerful and versatile routine, often called by QuickTime for
Windows internally, that is used to dictate most of the movie controller's behavior by
taking particular defined actions. There are many mcActions in the QuickTime for
Windows API, ranging from starting the movie to toggling low-level attributes. In most
cases, an additional parameter is required to modify the task of the mcAction
parameter. Often this is a boolean value which can turn a certain attribute on or off, or
a pointer to a value holding state information.

For example, your application might define a menu item that stops all currently playing
movies. When the user selects this menu item, your application could use the
MCDoAction function to instruct each controller to stop playing. You would do so by
specifying the mcActionPlay action with the last parameter set to specify that the
controller stop playing the movie.

Often you will issue a MCDoAction call in response to a user action, such as a menu
selection. More importantly, you can trap a MCDoAction event issued by QuickTime
for Windows itself in a filter, since QuickTime for Windows passes all MCDoAction
calls through your filter (if you have one) before processing them. For further details,
see MCSetActionFilter.

Example
MovieController mcController;
·
·
// Disable the keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) FALSE);

See Also:

Functions MCSetActionFilter

MCDoAction mcActionActivate
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionActivate parameter causes the movie controller to
be activated.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionActivate

LPVOID lpvParams
NULL

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values.

Comments An inactive movie controller cannot receive mouse clicks and its appearance is grayed.
It can still receive keyboard input, if the keyboard interface is active. Movie controllers
are created with an active state by default.

A movie/movie controller pair can have opposing states. For example, a playing movie's
controller can be deactivated, graying it and prohibiting further mouse input, but the
movie will keep playing. In the case where the controller is active and the movie is
inactive, the movie will receive no service from the QuickTime for Windows scheduler
and will not play even though the controller is functional.

More than one movie controller can be active at a time. Both attached and detached
movie controllers can be made inactive.

Example
MovieController mcController;
·
·
// Activate the movie controller

 MCDoAction (mcController, mcActionActivate, NULL);

See Also:

Functions MCActivate, MCDoAction, MCSetActionFilter

MCDoAction mcActionDeactivate

MCDoAction mcActionBadgeClick
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

Your filter receives a mcActionBadgeClick notification when the user has clicked
on a movie's badge.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionBadgeClick

LPVOID lpvParams
NULL

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Your application should normally never issue this action. An action filter function may
trap it when the user has clicked on a movie's badge. See the description of
MCSetActionFilter for details on the filter procedure.

If a controller's badge capability is enabled, then the badge is displayed whenever the
controller is not visible. When the controller is visible, the badge is not displayed. If the
badge capability is disabled, the badge is never displayed.

Example See the sample program listing FILTERS.C in the QuickTime for Windows Tutorial
section for further information about filters.

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetUseBadge

MCDoAction      mcActionControllerSizeChanged
Syntax ComponentResult MCDoAction(MovieController mcController, UINT

uAction, LPVOID lpvParams)

Your filter receives a mcActionControllerSizeChanged notification when the
user has resized the movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionControllerSizeChanged

LPVOID lpvParams
NULL

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Your application should normally never issue this action. An action filter function may
trap it when the user has resized the movie controller. See the description of
MCSetActionFilter for details on the filter procedure.

Example See the sample program listing FILTERS.C in the QuickTime for Windows Tutorial
section for further information about filters.

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction  mcActionDeactivate
Syntax ComponentResult MCDoAction(MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionDeactivate parameter causes the movie controller
to be deactivated.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionDeactivate

LPVOID lpvParams
NULL

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments An inactive movie controller cannot receive mouse clicks and its appearance is

grayed. It can still receive keyboard input, if the keyboard interface is active. Movie
controllers are created with an active state by default.

A movie/movie controller pair can have opposing states. For example, a playing
movie's controller can be deactivated, graying it and prohibiting further mouse input,
but the movie will keep playing. In the case where the controller is active and the
movie is inactive, the movie will receive no service from the QuickTime for Windows
scheduler and will not play even if the controller is functional.

More than one movie controller can be active at a time. Both attached and detached
movie controllers can be made inactive.

Example
MovieController mcController;
·
·
// Deactivate the movie controller

 MCDoAction (mcController, mcActionDeactivate, NULL);

See Also:

Functions MCActivate, MCDoAction, MCSetActionFilter

MCDoAction mcActionActivate

MCDoAction  mcActionDraw
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionDraw parameter causes the movie image to be
redrawn.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionDraw

LPVOID lpvParams
NULL

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Your application can use MCDoAction with this parameter to send an update event to
a movie controller.

Example
MovieController mcController;

·
·
// Update the movie image

 MCDoAction (mcController, mcActionDraw, NULL);

See Also:

Functions MCDoAction, MCDraw, MCSetActionFilter

MCDoAction  mcActionGetFlags
Syntax ComponentResult MCDoAction(MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetFlags parameter retrieves a set of flag values
that determine the behavior of the Movie Controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetFlags

LPVOID lpvParams
A pointer to a long integer that contains the set of flag values:
 o mcFlagsUseWindowPalette
 o mcFlagSuppressStepButtons
 o mcFlagSuppressSpeakerButton

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments The retrieved flags are defined as follows:

mcFlagSuppressStepButtons - Determines whether the movie controller displays
the step buttons. The step buttons allow the user to step the movie forward or
backward one frame at a time. If this flag is set, the controller does not display the
step buttons.

mcFlagSuppressSpeakerButton - Determines whether the movie controller
displays the speaker button. The speaker button allows the user to control the movie's
sound. If this flag is set, the controller does not display the speaker button.

mcFlagsUseWindowPalette - Determines whether the movie controller constructs
a custom color palette, based on the color values found in the movie. This flag only
works with display drivers that support palettes, typically those drivers that handle
colors at pixel depth eight.

Example
MovieController mcController;
LONG lFlags;
·
·
// Hide the speaker button

MCDoAction (mcController, mcActionGetFlags, (LPVOID) &lFlags);
lFlags |= mcFlagSuppressSpeakerButton;
MCDoAction (mcController, mcActionSetFlags, (LPVOID) lFlags);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetFlags

MCDoAction  mcActionGetKeysEnabled
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetKeysEnabled parameter determines whether a
movie controller's keyboard interface is enabled.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetKeysEnabled

LPVOID lpvParams
A pointer to a boolean, set to TRUE if keyboard interface is enabled, FALSE if not.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments An inactive keyboard interface is the default attribute for a new movie controller. The
keyboard interface will remain in an active state even if the controller is set inactive
(i.e. grayed and unable to receive mouse clicks).

Example
MovieController mcController;
BOOL bEnabled;
·
·
// Enable keystrokes for movie if they're disabled

 MCDoAction (mcController, mcActionGetKeysEnabled, (LPVOID)
&bEnabled);
 if (!bEnabled)

 MCDoAction (mcController, mcActionSetKeysEnabled, LPVOID)
TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetKeysEnabled

MCDoAction  mcActionGetLooping
Syntax ComponentResult MCDoAction(MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetLooping determines whether looping is enabled
for a movie controller

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetLooping

LPVOID lpvParams
A pointer to a boolean, set to TRUE if looping is enabled, FALSE if not.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting over at
the beginning of the movie when the end is reached. Palindrome looping makes the
movie play backward to the beginning before starting over.

Example
MovieController mcController;
BOOL bLoop;
·
·
// Turn looping on for a movie if it is off

 MCDoAction (mcController, mcActionGetLooping,
 (LPVOID) &bLoop);
 if (!bLoop)
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetLooping, mcActionSetLoopIsPalindrome

MCDoAction  mcActionGetLoopIsPalindrome
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetLoopIsPalindrome determines whether
palindrome looping is enabled for a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetLoopIsPalindrome

LPVOID lpvParams
A pointer to a boolean, set to TRUE if palindrome looping is enabled, FALSE if not.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting over at
the beginning of the movie when the end is reached. Palindrome looping makes the
movie play backward to the beginning when it reaches the end. Normal looping must
also be enabled in order for palindrome looping to work.

Example
MovieController mcController;
BOOL bLoop;
·
·
// Turn palindrome looping on for a movie if it is off

 MCDoAction (mcController, mcActionGetLoopIsPalindrome,
 (LPVOID) &bLoop);
 if (!bLoop)
 {
 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);
 }

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetLooping, mcActionSetLooping, mcActionSetLoopIsPalindrome

MCDoAction  mcActionGetPlayEveryFrame
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetPlayEveryFrame parameter determines if the
movie controller has been instructed to play every frame in the movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetPlayEveryFrame

LPVOID lpvParams
A pointer to a boolean, set to TRUE if movie controller set to play every frame in the
movie, FALSE if not.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments If the movie is playing every frame, the sound will automatically be muted.

Example
MovieController mcController;
BOOL bPlay;
·
·
// See if every frame is being played. If not, make it so.

 MCDoAction (mcController, mcActionGetPlayEveryFrame,
 (LPVOID) &bPlay);
 if (!bPlay)
 MCDoAction
 (mcController, mcActionSetPlayEveryFrame,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetPlayEveryFrame

MCDoAction  mcActionGetPlayRate
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetPlayRate parameter determines the movie's
play rate.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetPlayRate

LPVOID lpvParams
Pointer to an LFIXED play rate value.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Rate of play values greater than 0 correspond to forward rates; values less than 0
play the movie backward. A value of 0 stops the movie. The integer portion of the
LFIXED value is signed. The fractional part is not.

The LFIXED value is the rate of the movie expressed as a multiplier of the recorded
rate. For example, a value of 1.0 means play the movie at the recorded rate. A value
of 1.5 would mean play the movie one and 1/2 times faster than its recorded rate.

Use MCDoAction with mcActionPlay to set a movie's playback rate.

Example
MovieController mcController;
LFIXED lfxRate;
·
·
// Get the movie's play rate.

 McDoAction (mcController, mcActionGetPlayRate,
 (LPVOID) &lfxRate);

See Also:

Functions GetMoviePreferredRate, MCDoAction, MCSetActionFilter

MCDoAction mcActionPlay

MCDoAction  mcActionGetPlaySelection
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetPlaySelection parameter determines whether
a movie is constrained to playing a selected portion of a movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetPlaySelection

LPVOID lpvParams
A pointer to a boolean, set to TRUE if the movie will play only its selected portion,
FALSE if not.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments A selection can be made and cleared using the movie controller. A darkened section of
its slider represents the selected part of the movie.

Example
MovieController mcController;
BOOL bPlaySel;
·
·
// Turn off play selection if it is on

 MCDoAction (mcController, mcActionGetPlaySelection,
 (LPVOID) &bPlaySel);
 if (bPlaySel)
 MCDoAction (mcController, mcActionSetPlaySelection,
 (LPVOID) FALSE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetPlaySelection, mcActionSetSelectionBegin,
mcActionSetSelectionDuration

MCDoAction  mcActionGetUseBadge
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetUseBadge parameter determines whether a
movie controller's ability to display a badge is enabled or disabled.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetUseBadge

LPVOID lpvParams
A pointer to a boolean, set to TRUE if the badge can be used, FALSE if not.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments If a controller's badge capability is enabled, then the badge is displayed whenever the
controller is not visible. When the controller is visible, the badge is not displayed. If the
badge capability is disabled, the badge is never displayed.

Example
MovieController mcController;
BOOL bBadge;
·
·
// Turn on the badge if it is off

 MCDoAction (mcController, mcActionGetUseBadge,
 (LPVOID) &bBadge);
 if (!bBadge)
 MCDoAction (mcController, mcActionSetUseBadge,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetUseBadge, mcActionBadgeClick

MCDoAction  mcActionGetVolume
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGetVolume parameter retrieves the movie's volume.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGetVolume

LPVOID lpvParams
A pointer to an SFIXED which will receive the volume.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Volume ranges in value from -256 to +256. A negative value indicates the sound is
muted, while preserving the absolute value of the volume.

Example
MovieController mcController;
SFIXED sfxVolume;
·
·
// Get the movie's volume

 MCDoAction (mcController, mcActionGetVolume,
 (LPVOID) &sfxVolume);

See Also:

Functions GetMoviePreferredVolume, MCDoAction, MCSetActionFilter

MCDoAction mcActionSetVolume

MCDoAction  mcActionGoToTime
Syntax ComponentResult MCDoAction(MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionGoToTime parameter causes the movie to be
positioned at the specified time value.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionGoToTime

LPVOID lpvParams
The address of a time record specifying the position at which the movie will be set.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments The minimum TimeValue you can supply in the TimeRecord pointed to in the third
parameter which is the very beginning of the movie. The TimeValue is expressed in
time units which are related to the movie's time scale.

The time coordinate system contains a time scale scored in time units. The number of
units that pass per second quantifies the scale: a time scale of 26 means that 26 units

pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as a number of
time units. Particular points in a movie can be identified by a time value, which is the
number of time units to that point from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to compare
TimeValues between different movies.

Example
MovieController mcController;
TimeValue tvLocation;
Movie mMovie;
TimeRecord trRecord;
·
·
// Advance the movie to the poster frame

tvLocation = GetMoviePosterTime (mMovie);
trRecord.value.dwLo = tvLocation;
trRecord.value.dwHi = 0;
trRecord.scale = GetMovieTimeScale (mMovie);
MCDoAction(mcController, mcActionGoToTime,
 (LPVOID) &trRecord);

See Also:

Functions ConvertTimeScale, GetMoviePosterTime, GetMovieTimeScale, MCDoAction,
MCGetCurrentTime, MCSetActionFilter

MCDoAction  mcActionIdle
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionIdle parameter allocates processing time to a
movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionIdle

LPVOID lpvParams
NULL

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments This action is used internally by QuickTime for Windows to keep movies playing. A

filter you create can trap it and initiate further processing based on its being issued. In
unusual cases where your program cannot use MCIsPlayerMessage, this action can
be used directly to facilitate playing a movie.

Example See the sample program listing FILTERS.C in the QuickTime for Windows Tutorial
section for further information about filters.

See Also:

Functions MCDoAction, MCIdle, MCSetActionFilter

MCDoAction  mcActionKey
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionKey parameter causes a Windows WM_KEYDOWN or
WM_KEYUP message to be passed to a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionKey

LPVOID lpvParams
The address of a Windows MSG structure..

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments This action is normally issued by QuickTime for Windows internally when a key is
pressed. A filter you create can trap it and initiate further processing based on its
being issued. In unusual cases where your program cannot use MCIsPlayerMessage,
this action could be used directly to facilitate playing a movie.

Example See the sample program listing FILTERS.C in the QuickTime for Windows Tutorial
section for further information about filters.

See Also:

Functions MCDoAction, MCSetActionFilter, MCKey

MCDoAction      mcActionPlay
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionPlay parameter causes the movie to play at a
specified play rate.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionPlay

LPVOID lpvParams
LFIXED play rate value.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Play rate values greater than 0 correspond to forward rates; values less than 0 play
the movie backward. A value of 0 stops the movie. The integer portion of the LFIXED
value is signed. The fractional part is not.

The LFIXED value is the rate of the movie expressed as a multiplier of the recorded
rate. For example, a value of 1.0 means play the movie at its normal rate. A value of
1.5 would mean play the movie one and 1/2 times faster than its normal rate.

Use MCDoAction with mcActionGetPlayRate to determine a movie's playback rate.

Example
Movie mMovie;
MovieController mcController;
LFIXED lfxRate;
·
·
// Play the movie at 1.5 times its preferred rate.

 lfxRate = MAKELFIXED(0x0001, 0x8000);
 MCDoAction (mcController, mcActionPlay, (LPVOID) lfxRate);

See Also:

Functions GetMoviePreferredRate, MCDoAction, MCSetActionFilter

MCDoAction mcActionGetPlayRate

MCDoAction    mcActionSetFlags
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetFlags parameter sets a defined collection of
flags that determine the behavior of the Movie Controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetFlags

LPVOID lpvParams
A long integer that contains the flags to be set:
mcFlagsUseWindowPalette
mcFlagSuppressStepButtons
mcFlagSuppressSpeakerButton

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments The following flags are defined:

mcFlagSuppressStepButtons - Determines whether the movie controller displays
the step buttons. The step buttons allow the user to step the movie forward or
backward one frame at a time. If this flag is set, the controller does not display the
step buttons.

mcFlagSuppressSpeakerButton - Determines whether the movie controller
displays the speaker button. The speaker button allows the user to control the movie's
sound. If this flag is set, the controller does not display the speaker button.

mcFlagsUseWindowPalette - Determines whether the movie controller constructs
a custom color palette, based on the color values found in the movie. This flag only
works with display drivers that support palettes, typically those drivers that handle
colors at pixel depth eight.

Example
MovieController mcController;
LONG lFlags;

// Show the speaker button

 MCDoAction (mcController, mcActionGetFlags, &lFlags);
 lFlags &= ~mcFlagSuppressSpeakerButton;
 MCDoAction (mcController, mcActionSetFlags, (LPVOID)
 lFlags);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetFlags

MCDoAction      mcActionSetGrowBoxBounds
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetGrowBoxBounds sets the size of the rectangle in
which a movie can be resized.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetGrowBoxBounds

LPVOID lpvParams
A pointer to the bounds rectangle which defines the new limits.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Using an empty rectangle results in a movie controller not having a grow box. Using
the current bounds rectangle (see MCGetControllerBoundsRect) allows resizing the
movie smaller only. Using the client window rectangle allows resizing the movie up to
the size of the client window.

Example
MovieController mcController;
RECT rcBounds;
·
·
// Allow resizing only less than current bounds

 MCGetControllerBoundsRect (mcController, &rcBounds);
 MCDoAction (mcController, mcActionSetGrowBoxBounds,
 (LPVOID) &rcBounds);

See Also:

Functions MCDoAction, MCGetControllerBoundsRect, MCSetActionFilter

MCDoAction      mcActionSetKeysEnabled
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetKeysEnabled sets a movie controller's

keyboard interface to the active or inactive state.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetKeysEnabled

LPVOID lpvParams
A boolean, set to TRUE to enable a keyboard interface, FALSE to disable it.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments An inactive keyboard interface is the default attribute for a new movie controller. The
keyboard interface will remain in an active state even if the controller is set inactive
(i.e. grayed and unable to receive mouse clicks).

Example
MovieController mcController;
·
·
// Enable a movie controller's keyboard interface

 MCDoAction (mcController, mcActionSetKeysEnabled,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCKey, MCSetActionFilter

MCDoAction mcActionGetKeysEnabled, mcActionKey

MCDoAction      mcActionSetLooping
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetLooping parameter enables or disables
looping for a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetLooping

LPVOID lpvParams
A boolean, set to TRUE to enable looping, FALSE to disable it.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting over at
the beginning of the movie when the end is reached. Palindrome looping makes the
movie play backward to the beginning before starting over.

Example
MovieController mcController;
·
·
// Turn looping on for a movie

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetLooping, mcActionSetLoopIsPalindrome

MCDoAction    mcActionSetLoopIsPalindrome
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetLoopIsPalindrome parameter enables or
disables palindrome looping for a movie controller.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetLoopIsPalindrome

LPVOID lpvParams
A boolean, set to TRUE to enable palindrome looping, FALSE to disable it.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments A movie controller with looping enabled plays a movie continuously, starting over at

the beginning of the movie when the end is reached. Palindrome looping makes the
movie play backward to the beginning when it reaches the end. Normal looping must
also be enabled in order for palindrome looping to work.

Example
MovieController mcController;
·
·
// Turn palindrome looping on for a movie

 MCDoAction (mcController, mcActionSetLooping,
 (LPVOID) TRUE);
 MCDoAction (mcController, mcActionSetLoopIsPalindrome,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionSetLooping, mcActionGetLoopIsPalindrome

MCDoAction    mcActionSetPlayEveryFrame
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetPlayEveryFrame parameter instructs the movie
controller to play every frame in the movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetPlayEveryFrame

LPVOID lpvParams
A boolean, set to TRUE to play every frame in the movie, FALSE to play movie frames
normally.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Issuing this instruction will automatically mute the movie's sound.

Example
MovieController mcController;
·
·
// Instruct the movie controller to play every frame

 MCDoAction (mcController, mcActionSetPlayEveryFrame,

 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetPlayEveryFrame, mcActionPlay

MCDoAction  mcActionSetPlaySelection
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetPlaySelection parameter constrains or
unconstrains a movie controller to playing only the current selection.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetPlaySelection

LPVOID lpvParams
A boolean, set to TRUE to constrain the controller to playing only its current selection,
FALSE to unconstrain the controller.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments A selection can be made and cleared using the movie controller. A darkened section of
its slider represents the selected part of the movie.

Example
MovieController mcController;
·
·
// Constrain playing to the selection

 MCDoAction (mcController, mcActionSetPlaySelection,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetPlaySelection, mcActionSetSelectionBegin,
mcActionSetSelectionDuration

MCDoAction      mcActionSetSelectionBegin
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetSelectionBegin parameter sets the starting
point of a selected portion of a movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetSelectionBegin

LPVOID lpvParams
A pointer to a time record. You must specify the start time for the selection in the
TimeValue field.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments This action has no effect unless a mcActionSetPlaySelection has been effected.

A selection can be made and cleared using the movie controller. A darkened section of
its slider represents the selected part of the movie.

Example
MovieController mcController;
TimeRecord trRecord;
Movie mMovie;
TimeValue tvStart, tvDuration;
·
·
// Set the selection start time

 trRecord.value.dwLo = tvStart;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionBegin,
 (LPVOID) &trRecord);

// Set the selection duration

 trRecord.value.dwLo = tvDuration;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionDuration,
 (LPVOID) &trRecord);

See Also:

Functions GetMovieActiveSegment, MCDoAction, MCSetActionFilter

mcActionSetSelectionDuration, mcActionSetPlaySelection

Data Types TimeScale, TimeValue

MCDoAction      mcActionSetSelectionDuration
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetSelectionDuration parameter sets the
duration of a selected portion of a movie.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetSelectionDuration

LPVOID lpvParams
The address of a time record. You must specify the duration of the selection in the
TimeValue field.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments This action has no effect unless a mcActionSetPlaySelection has been effected. A
selection can be made and cleared using the movie controller. A darkened section of
its slider represents the selected part of the movie.

Example
MovieController mcController;
TimeRecord trRecord;
Movie mMovie;
TimeValue tvStart, tvDuration;
·
·
// Set the selection start time

 trRecord.value.dwLo = tvStart;
 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionBegin,
 (LPVOID) &trRecord);

// Set the selection duration

 trRecord.value.dwLo = tvDuration;

 trRecord.value.dwHi = 0;
 trRecord.scale = GetMovieTimeScale (mMovie);
 MCDoAction (mcController, mcActionSetSelectionDuration,
 (LPVOID) &trRecord);

See Also:

Functions GetMovieActiveSegment, MCDoAction, MCSetActionFilter

MCDoAction mcActionSetSelectionBegin, mcActionSetPlaySelection,
mcActionSetSelectionDuration

Data Types TimeScale, TimeValue

MCDoAction      mcActionSetUseBadge
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetUseBadge parameter enables or disables a
movie controller's ability to display a badge.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetUseBadge

LPVOID lpvParams
A boolean, set to TRUE to enable the ability to display a badge, FALSE to disable it.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments If a controller's badge capability is enabled, then the badge is displayed whenever the
controller is not visible. When the controller is visible, the badge is not displayed. If the
badge capability is disabled, the badge is never displayed.

Example
MovieController mcController;
·
·
// Turn on the ability to display a badge

 MCDoAction (mcController, mcActionSetUseBadge,
 (LPVOID) TRUE);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionGetUseBadge

MCDoAction      mcActionSetVolume
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionSetVolume parameter sets the movie's volume.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionSetVolume

LPVOID lpvParams
A SFIXED value indicating the volume.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Volume ranges in value from -256 to +256. A negative value indicates the sound is
muted, while preserving the absolute value of the volume.

Example
MovieController mcController;
Movie mMovie;
SFIXED sfxVolume;
·
·
// Set the movie's volume to its preferred level

 sfxVolume = GetMoviePreferredVolume (mMovie);
 MCDoAction (mcController, mcActionSetVolume,
 (LPVOID) sfxVolume);

See Also:

Functions GetMoviePreferredVolume, MCDoAction, MCSetActionFilter

MCDoAction mcActionGetVolume

MCDoAction      mcActionStep
Syntax ComponentResult MCDoAction (MovieController mcController, UINT

uAction, LPVOID lpvParams)

MCDoAction with the mcActionStep parameter causes the movie to play a specified
number of frames at a time.

Parameters MovieController mcController
The movie controller object.

UINT uAction
mcActionStep

LPVOID lpvParams
A SHORT indicating the number of frames in the step.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Using a positive number of frames steps the movie forward. Using a negative number
steps the movie backward.

Example
MovieController mcController;
·
·
// Step the movie forward three frames

 MCDoAction (mcController, mcActionStep, (LPVOID) 3);

See Also:

Functions MCDoAction, MCSetActionFilter

MCDoAction mcActionPlay

MCDraw
Syntax ComponentResult MCDraw (MovieController mcController, HWND

hWnd)

MCDraw redraws the movie image.

Parameters MovieController mcController
The movie controller object.

HWND hWnd
The handle to the window.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments MCDraw calls MCDoAction with mcActionDraw. MCDraw is typically used to manually
refresh the movie image.

Example
MovieController mcController;
HWND hWnd;
·
·
MCDraw (mcController, hWnd);

See Also:

Functions MCIsPlayerMessage

MCDoAction mcActionDraw

MCDrawBadge
Syntax ComponentResult MCDrawBadge (MovieController mcController, HRGN

hrgnMovieRgn, HRGN FAR *lphrgnBadgeRgn)

MCDrawBadge displays a movie controller's badge.

Parameters MovieController mcController
The movie controller object.

HRGN hrgnMovieRgn
Must be set to NULL

HRGN FAR *lphrgnBadgeRgn
The address of the handle to a windows region which will be set to the region
occupied by the badge. If called as NULL, no region is returned.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. The window region referenced by the third parameter will be
populated with information about the badge.

Comments The second parameter must be NULL.

A badge may be drawn whether the movie is paused or playing. Any new movie
frame, however, will overlay it. The recommended method for displaying a badge is to
specify the mcWithBadge flag when NewMovieController is called, which will display
it automatically when the movie controller is hidden. You can also enable a controller
to display a badge by using MCDoAction with mcActionSetUseBadge.

MCDrawBadge ignores the mcWithBadge flag and will work even if the flag was not
specified when the movie controller was created.

MCSetVisible also may be used to draw a badge by side effect, if the movie
controller's visibility is set to FALSE and its badge flag is turned on.

Example
MovieController mcController;
HRGN hrgnBadge;
·
·
MCDrawBadge (mcController, NULL, &hrgnBadge);

See Also:

Functions MCSetVisible

MCDoAction mcActionGetUseBadge, mcActionSetUseBadge

MCGetControllerBoundsRect
Syntax ComponentResult MCGetControllerBoundsRect (MovieController

mcController, LPRECT lprcBounds)

MCGetControllerBoundsRect retrieves the bounds rectangle of the movie and
movie controller, or just the controller, depending on whether they are attached or
detached.

Parameters MovieController mcController
The movie controller object.

LPRECT lprcBounds
The address of the bounds rectangle.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. The bounds rectangle is populated with the bounds coordinates.

Comments If the movie controller is attached to the movie, the bounds rectangle referenced by
the second parameter is the smallest rectangle completely encompassing both the
movie and movie controller. When a controller is detached, its dimensions alone
determine the bounds rectangle.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

Example
RECT rcBounds;
MovieController mcController;
·
·
MCGetControllerBoundsRect (mcController, &rcBounds);

See Also:

Functions MCNewAttachedController, MCSetControllerAttached,
MCSetControllerBoundsRect

MCGetControllerInfo
Syntax ComponentResult MCGetControllerInfo (MovieController

mcController, LPLONG lplMcInfoFlags)

MCGetControllerInfo determines the current status of a set of movie controller
flags.

Parameters MovieController mcController
The movie controller object.

LPLONG lplMCInfoFlags
The address of a long integer which will contain the bit flags denoting various movie
controller attributes:
mcInfoHasSound
mcInfoIsPlaying
mcInfoIsLooping
mcInfoIsInPalindrome

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. The long integer referenced by the second parameter will be
populated with flag settings indicating controller attributes.

Comments The MCInfoFlags are defined as follows:

mcInfoHasSound - Indicates the movie has a sound track.

mcInfoIsPlaying - Indicates the movie was playing when the call was made.

mcInfoIsLooping - Indicates the controller was playing the movie in looping
mode when the call was made.

mcInfoIsInPalindrome - Indicates the controller was playing the movie in
palindrome mode when the call was made.

Example
MovieController mcController;
LONG lMCInfoFlags;
·
·
// See if the movie has sound

 MCGetControllerInfo (mcController, &lMCInfoFlags);
 if (lMCInfoFlags & mcInfoHasSound)
 /* Appropriate action if movie has sound. */
 else

 /* Appropriate action if movie has no sound. */

See Also:

Functions MCDoAction

MCDoAction mcActionSetLooping, mcActionSetLoopIsPalindrome, mcActionPlay

MCGetCurrentTime
Syntax TimeValue MCGetCurrentTime (MovieController mcController,

TimeScale FAR *tsScale)

MCGetCurrentTime retrieves the time value represented by the slider control on the
movie controller. It can also be used to obtain the time scale for this time value.

Parameters MovieController mcController
The movie controller object.

TimeScale FAR *tsScale
A pointer to the TimeScale value. May be set to NULL if it is not needed.

Return The TimeValue represented by the slider on the controller. If there are no movies
associated with the controller, the returned TimeValue is set to zero.

Comments This function may be called whether a movie is playing or not.

Example
Movie mMovie;
MovieController mcController;
PicHandle phPicture;
RECT rcPicture;
HDC hdc;
TimeValue tvTime;
·
·
// Retrieve frame at current movie time plus two seconds

 tvTime = MCGetCurrentTime (mcController, NULL) +
 (2 * GetMovieTimeScale (mMovie));
 if ((phPicture = GetMoviePict (mMovie, tvTime)) != NULL)
 DrawPicture (hdc, phPicture, &rcPicture, NULL);

See Also:

Functions MCDoAction

MCDoAction mcActionGoToTime

Data Types TimeScale, TimeValue

MCGetMovie
Syntax Movie MCGetMovie (MovieController mcController)

MCGetMovie retrieves the movie object associated with a specified movie controller.

Parameters MovieController mcController
The movie controller object.

Return The movie object associated with the movie controller. NULL is returned if no movie is
associated with the controller.

Comments The associated movie object is retrieved whether the controller is attached or not.

Example
MovieController mcController;
Movie mMovie;
·
·
mMovie = MCGetMovie (mcController);

See Also:

Functions MCSetMovie

MCGetVisible
Syntax ComponentResult MCGetVisible (MovieController mcController)

MCGetVisible determines whether a movie controller is visible.

Parameters MovieController mcController
The movie controller object.

Return FALSE if the movie controller is invisible. TRUE if the movie controller is visible. See
Appendix A for error condition values.

Comments Use the function MCSetVisible to make a movie controller visible or invisible.

Example
MovieController mcController;
·
·
// Make controller invisible if it is visible

 if (MCGetVisible (mcController))
 {
 MCSetVisible (mcController, FALSE);

 }

See Also:

Functions MCSetVisible, MCActivate

MCIdle
Syntax ComponentResult MCIdle (MovieController mcController)

MCIdle is used to keep a movie playing when your program is unable to use MCIsPlayerMessage.

Parameters MovieController mcController
The movie controller object.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments MCIdle calls MCDoAction with mcActionIdle. Using the routine MCIsPlayerMessage
is the recommended method to keep a movie playing, and you should use MCIdle
only in special circumstances where you must micro-manage the movie controller or
cannot use MCIsPlayerMessage.

See Also:

Functions MCDoAction, MCIsPlayerMessage

MCDoAction mcActionIdle

MCIsControllerAttached
Syntax ComponentResult MCIsControllerAttached (MovieController

mcController)

MCIsControllerAttached determines whether a movie controller is attached to a
movie.

Parameters MovieController mcController
The movie controller object.

Return TRUE if the controller is attached, FALSE if not. Otherwise an error condition. See
Appendix A for error condition values.

Comments Use the MCSetControllerAttached function to attach or detach a movie controller.
Remember not to confuse attachment with association. An attached controller is
physically adjacent to the movie on the screen. An associated controller is used to run

a movie, and need not be attached.

Example
MovieController mcController;
RECT rcMovie, rcController;
·
·
// Detach the controller and move it away from movie
// But only if it is attached

 if (MCIsControllerAttached (mcController))
 {
 MCSetControllerAttached (mcController, FALSE);
 MCPositionController (mcController, &rcMovie,
 &rcController, 0L);
 }

See Also:

Functions MCPositionController, MCSetControllerAttached

MCIsPlayerMessage
Syntax ComponentResult MCIsPlayerMessage (MovieController mcController,

HWND hWnd, UINT wMessage, WPARAM wParam, LPARAM lParam)

MCIsPlayerMessage is the routine normally used to keep a movie playing. It is called in a
program's window procedure and redirects all messages targeted for the movie controller.

Parameters MovieController mcController
The movie controller object.

HWND hWnd
The argument received by the window procedure.

UINT wMessage
The argument received by the window procedure.

WPARAM wParam
The argument received by the window procedure.

LPARAM lParam
The argument received by the window procedure.

Return If a message received by the window procedure is not meant for the movie controller,
MCIsPlayerMessage returns FALSE and the message gets processed normally. If the
message is handled by the movie controller, MCIsPlayerMessage returns TRUE.

Comments For each movie controller you create, you will have to code a separate call to
MCIsPlayerMessage with the corresponding movie controller object as the first
parameter

MCIsPlayerMessage is not the only method of playing a movie. However, it is highly
recommended. See the descriptions of MCIdle and MCKey.

Example
LONG FAR PASCAL WndProc (HWND hWnd, UINT msg, WPARAM wParam,
 LPARAM lParam)
 {
// Drive the movie controller

 if (MCIsPlayerMessage (mcController, hWnd, msg, wParam, lParam))
 return 0;

// Process the windows message

 switch (msg)
 {
 ·
 ·
 }
 }

See Also:

Functions MCIdle, MCKey

MCKey
Syntax ComponentResult MCKey (MovieController mcController, WPARAM

wParam, LPARAM lParam);

MCKey calls MCDoAction with mcActionKey, which causes a Windows WM_KEYDOWN
or WM_KEYUP message to be passed to a movie controller.

Parameters MovieController mcController
The movie controller object.

WPARAM wParam
The argument received by the window procedure.

LPARAM lParam
The argument received by the window procedure.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments MCKey and MCIdle can be used instead of MCIsPlayerMessage when your program is

unable to use that particular function.

See Also:

Functions MCIsPlayerMessage, MCIdle

MCNewAttachedController
Syntax ComponentResult MCNewAttachedController (MovieController

mcController, Movie mMovie, HWND hWnd, POINT ptUpperLeft)

MCNewAttachedController attaches an existing movie to an existing movie
controller.

Parameters MovieController mcController
The existing movie controller object.

Movie mMovie
The existing movie object.

HWND hWnd
The parent window handle.

POINT ptUpperLeft
The upper left corner of the movie rectangle.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments When a movie is associated with a movie controller, a reference to the movie object is
recorded in the controller's data structure. Movie data structures contain no elements
which link them with movie controllers. The point specified by ptUpperLeft
becomes the new upper left corner of the bounds rectangle.

Once a movie is associated with a controller, it starts playing immediately (assuming it
has a non-zero play rate, which is normally the case). To make a movie paused when
first visible and associated with a new controller, you can use MCDoAction with an
action of mcActionPlay and a play rate of 0. It is good style to do this as soon as
possible after performing the association.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

Example
Movie mMovie;
MovieController mcController;
POINT ptUpperLeft;
·
·

MCNewAttachedController (mcController, mMovie, hWnd,
 ptUpperLeft);

See Also:

Functions NewMovieController, MCSetMovie

MCPositionController
Syntax ComponentResult MCPositionController (MovieController

mcController, LPRECT lprcMovieRect, LPRECT lprcControllerRect,
LONG lControllerCreationFlags)

MCPositionController sets the size and position of a movie and its controller. This
function works with both attached and detached movie controllers.

Parameters MovieController mcController
The movie controller object.

LPRECT lprcMovieRect
The address of a RECT structure specifying the coordinates of the movie's bounds
rectangle.

LPRECT lprcControllerRect
The address of a RECT structure specifying the coordinates of the controller's bounds
rectangle. Use NULL if the movie controller is attached.

LONG lControllerCreationFlags
A LONG containing flags that modify the result of the routine. These are the same flags
used with NewMovieController.

If you set this parameter to 0, the movie will be centered in the movie rectangle and the
movie will be scaled to fit in that rectangle. These flags are:

mcTopLeftMovie - Places the movie at the top left hand corner of the movie
rectangle specified.

mcScaleMovieToFit - Resizes the movie to fit into the movie rectangle specified
(excluding the area taken up by the controller).

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments This is the recommended call to reposition and resize a movie with a detached
controller. Remember not to confuse attachment with association. An attached
controller is physically adjacent to the movie.

An associated controller is used to run a movie, and need not be attached.

Whenever the controller bounds rectangle changes, your action filter, if any, will get

called with mcActionControllerSizeChanged after the changes to the rectangle have
occurred.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume client
device coordinates.

Example
MovieController mcController;
RECT rcMovie, rcController;
·
·
// Detach the controller and move it away from movie

 MCSetControllerAttached (mcController, FALSE);
 MCPositionController (mcController, &rcMovie,
 &rcController, 0L);
·
·
// Re-attach the controller

 MCSetControllerAttached (mcController, TRUE);

See Also:

Functions MCIsControllerAttached, MCSetControllerAttached, NewMovieController

MCSetActionFilter
Syntax ComponentResult MCSetActionFilter (MovieController mcController,

MCActionFilter lpfnFilter, LONG lRefCon)

MCSetActionFilter sets an action filter function for a movie controller.

Parameters MovieController mcController
The movie controller object.

MCActionFilter lpfnFilter
The address of the user-defined filter function.

LONG lRefCon
Additional data of use to the filter when processing the action. Should be coded as 0L if not
used.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values.

Comments An action filter intercepts the MCDoAction call, providing the opportunity to process the
action item before the movie controller.

The filter function must return a boolean: TRUE indicates the controller doesn't have to
handle the action. FALSE tells the controller to complete any appropriate processing of the

action item.

To remove the filter, you must call MCSetActionFilter with the filter function address set
to NULL.

If you compile your program using Borland smart callbacks or Microsoft's -GEs compiler
option, or your filter function is in a dynamic link library, you do not need to use
MakeProcInstance on your filter address before calling MCSetActionFilter.

Example
// Filter function declaration

 BOOL CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpParam, LONG lRefCon);

// The application window procedure

 MovieController mcController;
 struct {...} *pData;
 ·
 ·
 MCSetActionFilter (mcController, MyFilter, (LONG) pData);

// The filter function

 BOOL CALLBACK __export MyFilter (MovieController mcController,
 UINT uAction, LPVOID lpParam, LONG lRefCon)
 {
 PVOID pStruct;

 switch (uAction)
 {
 case mcActionControllerSizeChanged:

 pStruct = (PVOID) lRefCon;

 /* Do something with structure whose address was passed. */
 ·
 ·
 return TRUE;

 default:
 return FALSE;
 }
 }

See Also:

Functions MCDoAction, MCActionFilter

MCSetControllerAttached
Syntax ComponentResult MCSetControllerAttached (MovieController

mcController, BOOL bAttach)

MCSetControllerAttached attaches or detaches a movie controller from a movie.

Parameters MovieController mcController
The movie controller object.

BOOL bAttach
TRUE attaches the movie controller, FALSE detaches it.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Remember not to confuse attachment with association. An attached controller is
physically adjacent to the movie on the screen. An associated controller is used to run
a movie, and need not be attached.

If the controller is physically removed from the movie prior to attachment, it will jump
to its normal attached position directly below the movie when
MCSetControllerAttached is executed with TRUE.

Example
MovieController mcController;
RECT rcMovie, rcController;
·
·
// Detach the controller and move it away from movie

 MCSetControllerAttached (mcController, FALSE);
 MCPositionController (mcController, &rcMovie,
 &rcController, 0L);

// Re-attach the controller to the movie

 MCSetControllerAttached (mcController, TRUE);

See Also:

Functions MCIsControllerAttached, MCPositionController

MCSetControllerBoundsRect
Syntax ComponentResult MCSetControllerBoundsRect (MovieController

mcController, const LPRECT lprcBounds)

MCSetControllerBoundsRect resets the dimensions of a movie controller. If the
controller is attached, the movie may be resized as well.

Parameters MovieController mcController
The movie controller object.

const LPRECT lprcBounds
The address of the new bounds rectangle.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments When a movie controller is detached, its dimensions alone will be determined by the
new bounds rectangle. A movie controller's height cannot be reset. If the rectangle has
a height larger than the standard controller height, the movie controller is centered
vertically.
Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

When a movie controller is attached, the controller will use part of the new bounds
rectangle for itself. The movie will be sized to fit the remaining portion of the rectangle.

Whenever the controller bounds rectangle changes, your action filter, if any, will get
called with mcActionControllerSizeChanged after the changes to the rectangle have
occurred.

Example
RECT rcBounds;
MovieController mcController;
·
·
MCSetControllerBoundsRect (mcController, &rcBounds);

See Also:

Functions MCGetControllerBoundsRect, MCNewAttachedController,
MCSetControllerAttached

MCSetMovie
Syntax ComponentResult MCSetMovie (MovieController mcController, Movie

mMovie, HWND hWndMovieWindow, POINT ptUpperLeft)

MCSetMovie associates or disassociates an existing movie controller with an existing
movie. If the mMovie parameter is set to NULL, the movie controller is not associated
with any movie.

Parameters MovieController mcController
The existing movie controller object.

Movie mMovie
The existing movie object.

HWND hWndMovieWindow
The parent window handle.

POINT ptUpperLeft
A new location on the screen for the movie controller bounds rectangle.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments MCSetMovie is identical to MCNewAttachedController except that it is possible to
specify NULL as the movie object. The point specified by ptUpperLeft becomes the
new upper left corner of the bounds rectangle. This routine is the best way to
associate a different movie with a controller.

If appropriate, the location of the controller can be changed. When the movie
controller is attached, this moves the movie to another location of the screen.

When a controller is associated with a movie, a reference to the movie object is
recorded in the controller's data structure. A movie controller can be associated with
many movies during its existence, but only one at a time. Movie data structures
contain no elements which link them with movie controllers.

Movie controllers remain associated with movies regardless of their states. If a
controller is made invisible or inactive, for instance, it stays associated with its movie.
Conversely, movies continue to play even if the states of their associated controllers
are changed while they are playing. If either one of an associated pair is destroyed,
the other is not affected.

Once a movie is associated with a controller, it starts playing immediately (assuming it
has a non-zero play rate, which is normally the case). To make a movie paused when
first visible and associated with a new controller, you can use MCDoAction with an
action of mcActionPlay and a play rate of 0. It is good style to do this as soon as
possible after performing the association.

Association implies nothing about the proximity of movies and their controllers on the
screen. It is simply the means by which any movie can be plugged in to any controller
and played.

Whenever the controller bounds rectangle changes, your action filter, if any, will be
called with mcActionControllerSizeChanged after the changes to the rectangle have
occurred.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

Example
MovieController mcController;
POINT ptUpperLeft;
·
·
// Disassociate the movie controller from its movie

 MCSetMovie (mcController, NULL, hWnd, ptUpperLeft);

See Also:

Functions NewMovieController, MCNewAttachedController, MCSetControllerAttached

MCSetVisible
Syntax ComponentResult MCSetVisible (MovieController mcController,

BOOL bShow)

MCSetVisible hides a visible movie controller and makes visible a hidden movie
controller.

Parameters MovieController mcController
The movie controller object.

BOOL bShow
TRUE makes the movie controller visible, FALSE hides it.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values.

Comments Invisible movie controllers can be attached, detached, active or inactive. You just can't
see them. To query the visibility state of a movie controller, use MCGetVisible.

Calling MCSetVisible with FALSE displays the badge if the badge flag is turned
on. See the description of MCDrawBadge for more information about badges.

Example
MovieController mcController;
·
·
// Hide the movie controller

 MCSetVisible (mcController, FALSE);

See Also:

Functions MCDrawBadge, MCGetVisible, NewMovieController

NewMovieController
Syntax MovieController NewMovieController (Movie mMovie, const LPRECT

lprcMovieRect, LONG lControllerCreationFlags, HWND hWndParent)

NewMovieController creates and attaches a movie controller to a movie.

Parameters Movie mMovie
The movie object to be associated with the new movie controller. This movie object
was assigned by QuickTime for Windows when it processed NewMovieFromFile. It
can be NULL, which means that the new controller will not be associated with any
movie.

const LPRECT lprcMovieRect
The address of a bounds rectangle which will determine the movie and movie
controller's size and position, depending on the creation flags.

LONG lControllerCreationFlags
A LONG containing flags that modify the result of the routine. If you set this parameter
to 0, the movie will be centered in the movie rectangle and the movie will be scaled to
fit in that rectangle. These flags are:

mcScaleMovieToFit - Resizes the movie to fit into the movie rectangle specified
(excluding the area taken up by the controller).

both mcTopLeftMovie and mcScaleMovieToFit - resizes the movie to fit into
the movie rectangle specified, then expands the bounds rectangle to include the
movie controller (without cutting into the movie area).

mcWithBadge - Determines whether the controller can display a badge.

mcNotVisible - Determines the initial visibility state of the movie controller.

mcTopLeftMovie - Places the movie at the top left hand corner of the movie
rectangle specified.

HWND hWndParent
The parent window handle of the new movie controller.

Return A MovieController object. NULL indicates an error condition.

Comments NewMovieController creates the new controller within the bounds rectangle even
when the movie object is NULL. For all but one configuration of the controller creation
flags, the movie controller takes a portion out of the specified rectangle. The exception
is when both mcTopLeftMovie and mcScaleMoveToFit are specified, in which
case the movie controller is connected abutting the specified bounds rectangle.

To display the movie at optimum size with the correct aspect ratio, call GetMovieBox
before NewMovieController, and use the retrieved rectangle as the bounds

rectangle. Then specify both the mcTopLeftMovie and mcScaleMoveToFit flags.
Use the mcWithBadge flag to enable badge availability. This is the recommended
method of working with badges.

Movies and movie controllers are not permanently associated. Movie controllers can
be dynamically reassigned to movies at any point in the program provided they are
properly initialized. Destroying one does not destroy the other, nor does disconnecting
a movie from a movie controller disable either component.

When a controller is associated with a movie, a reference to the movie object is
recorded in the controller's data structure. A movie controller can be associated with
many movies during its existence, but only one at a time. Movie data structures
contain no elements which link them with movie controllers.

Once a movie is associated with a controller, it starts playing immediately (assuming it
has a non-zero play rate, which is normally the case). To make a movie paused when
first visible and associated with a new controller, you can use MCDoAction with an
action of mcActionPlay and a play rate of 0. It is good style to do this as soon as
possible after performing the association.

To play n cases of the same movie simultaneously, the movie file must be opened n
times to get n unique movie objects and then create or associate n movie controllers.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

Example
Movie mMovie;
MovieController mcController;
HWND hWndParent;
RECT rcMovie;
·
·
// Instantiate movie controller
// Movie to display at optimum size & aspect ratio

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);
 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWndParent);

See Also:

Functions DisposeMovieController, MCNewAttachedController, MCSetMovie

NewMovieFromDataFork
Syntax OSErr NewMovieFromDataFork (Movie FAR *fpmMovie, HFILE hFile,

LONG lOffset, UINT uiNewMovieFlags)

NewMovieFromDataFork initializes a movie object and associated storage in the
same manner as NewMovieFromFile, except that movie data is retrieved from an
open DOS file, beginning at a specified offset.

Parameters Movie FAR *fpmMovie
The address of the movie object to be allocated.

HFILE hFile
The file handle of an open DOS file containing the movie data.

LONG lOffset
An offset into the DOS file representing the start of the movie data.

UINT uiNewMovieFlags
newMovieActive sets movie active, 0 sets it inactive.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments This routine provides an alternative to NewMovieFromFile when movie data is stored
in a non-standard movie file. Note that the movie object will be in a non-active state
when it is extracted.

Also be aware that, unlike NewMovieFromFile, you must not close the DOS file
containing the movie until after you have called DisposeMovie.

Example
Movie mMovie;
OFSTRUCT ofstruct;
LONG lOffset
HFILE fhHandle;
 ·
 ·
// Open the DOS file containing the movie data

 fhHandle = OpenFile ("NEWSREEL.BIN", &ofstruct, OF_READ);

// Extract a movie object

 NewMovieFromDataFork (&mMovie, fhHandle, lOffset);
 ·
 ·
// Free the movie memory

 DisposeMovie (mMovie);

// Close the DOS file

 _lclose (fhHandle);

See Also:

Functions OpenMovieFile, CloseMovieFile, GetMoviesError, GetMoviesStickyError,
NewMovieFromFile

NewMovieFromFile

Syntax OSErr NewMovieFromFile (Movie FAR *fpmMovie, MovieFile mfMovie,
SHORT FAR *lpsResID, LPSTR lpstrResName, UINT uiNewMovieFlags,
BOOL FAR *lpbDataRefWasChanged)

NewMovieFromFile initializes a movie object, allocates and initializes all storage
required for the movie and performs various internal tasks such as telling QuickTime
for Windows' scheduler to add the movie to its tables.

Parameters Movie FAR *fpmMovie
The address of the movie object.

MovieFile mfMovie
The reference value that refers to the open movie file. This is obtained from
OpenMovieFile.

SHORT FAR *lpsResID
Set to NULL.

LPSTR lpstrResName
Set to NULL.

UINT uiNewMovieFlags
newMovieActive sets movie active, 0 sets it inactive.

BOOL FAR *lpbDataRefWasChanged
Set to NULL.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments For each movie you wish to play, you must call OpenMovieFile followed by
NewMovieFromFile. As soon as possible after NewMovieFromFile, the movie
file may be closed with CloseMovieFile.

To play n cases of the same movie simultaneously, the movie file must be opened n
times to get n unique movie objects and then associated with n movie controllers.

Example
MovieFile mfMovie;
Movie mMovie;
MovieController mcController;
RECT rcMovie;
·
·
// Open the movie file

 OpenMovieFile ("NEWSREEL.MOV", &mfMovie, OF_READ);

// Establish a movie object

 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL, 0, NULL);

// Close the movie file

 CloseMovieFile (mfMovie);

// Get a bounds rectangle

 GetMovieBox (mMovie, &rcMovie);
 OffsetRect (&rcMovie, -rcMovie.left, -rcMovie.top);

// Create a movie controller

 mcController = NewMovieController (mMovie, &rcMovie,
 mcTopLeftMovie + mcScaleMovieToFit, hWndParent);

// Make the movie active

 SetMovieActive (mMovie, TRUE);

See Also:

Functions OpenMovieFile, CloseMovieFile, GetMoviesError, GetMoviesStickyError

NormalizeRect
Syntax VOID NormalizeRect (LPRECT lprcRect)

NormalizeRect adjusts the width and height of a rectangle such that its aspect ratio
matches that of a similar rectangle on the Macintosh.

Parameters LPRECT lprcRect
The address of the rectangle to normalize.

Return None. The normalized rectangle is placed in the rectangle referenced. You can use
GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments NormalizeRect uses the LOGPIXELSX and LOGPIXELSY values returned from the
Windows function GetDeviceCaps to adjust the width and height of a rectangle. It
ensures the correct aspect ratio of the movie rectangle.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

Example
PicFile pfPicture;
OpenCPicParams ocppHeader;
OFSTRUCT ofsOpenFileStr;
RECT rcFrame;
·

·
OpenPictureFile ("HOUSE.PIC", &pfPicture, OF_READ);
GetPictureFileHeader (pfPicture, &rcFrame, &ocppHeader);
ClosePictureFile (pfPicture);
NormalizeRect (&rcFrame);

See Also:

Functions GetMoviesError, GetMoviesStickyError

OpenMovieFile
Syntax OSErr OpenMovieFile (LPCSTR lpstrFileSpec, SHORT FAR

*MovieFile, int sOFlag)

OpenMovieFile opens a file containing a movie.

Parameters LPCSTR lpstrFileSpec
The name of a string containing the movie file name.

SHORT FAR *MovieFile
The address of a reference value which will be assigned by this function, and which
will be used by NewMovieFromFile and CloseMovieFile. Valid values are in the range
0x000 through 0xFFFE. 0xFFFF indicates and invalid value.

int sOFlag
An integer expressed as a standard file open flag as defined for the Windows
OpenFile function. Movie files are normally opened as read only (use the OF_READ
flag).

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments QuickTime for Windows movie file names have the DOS suffix ".MOV".

To play n cases of the same movie simultaneously, the movie file must be opened n
times to get n unique movie objects and then associate n movie controllers.

Example
MovieFile mfMovie;
Movie mMovie;
·
·
if (!OpenMovieFile ("MOVIE.MOV", &mfMovie, OF_READ))
 {
 NewMovieFromFile (&mMovie, mfMovie, NULL, NULL,
 newMovieActive, NULL);
 CloseMovieFile (mfMovie);
 }
else

 {
 MessageBox (hWnd, "OpenMovieFile failure",
 "Movie Initialization", MB_OK);
 }

See Also:

Functions NewMovieFromFile, CloseMovieFile, GetMoviesError, GetMoviesStickyError

OpenPictureFile
Syntax OSErr OpenPictureFile (LPCSTR lpstrFileSpec, PicFile FAR

*pfPicture, int sOFlag)

OpenPictureFile opens a file containing a picture.

Parameters LPCSTR lpstrFileSpec
A pointer to a string containing the picture file name.

PicFile FAR *pfPicture
The address of a reference value which will be assigned by this function, and which will
be used by ClosePictureFile and other routines that reference picture data. Valid values
range from 0x000 through 0xFFFE. 0xFFFF indicates and invalid value.

int sOFlag
An integer expressed as a standard file open flag as defined for the Windows
OpenFile function. Picture files are normally opened as read only (use the OF_READ
flag).

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error condition
values. You can use GetMoviesError and GetMoviesStickyError to test for failure of this
call.

Comments QuickTime for Windows picture files are characterized by the DOS suffix ".PIC".

Example
PicFile pfPicture;
·
·
if (OpenPictureFile ("PICTURE.PIC", &pfPicture, OF_READ))
 {
 /* Inform user of failure. */
 }

See Also:

Functions ClosePictureFile, GetMoviesError, GetMoviesStickyError

PictureToDIB
Syntax DIBHandle PictureToDIB (PicHandle pcThePict)

PictureToDIB converts a QuickTime for Windows format picture to a Windows
compatible Device Independent Bitmap (DIB) format.

Parameters PicHandle pcThePict
The QuickTime for Windows picture object.

Return A handle to a Windows Device Independent Bitmap (DIB). You can use GetMoviesError
and GetMoviesStickyError to test for failure.

Comments The QuickTime for Windows format picture may be drawn directly to the screen without
conversion to a Windows DIB by using the DrawPicture function. The object returned by
PictureToDIB must be freed by the Windows GlobalFree function when you are
through using it. It is, however, created with the GMEM_SHARE flag, so you can
conveniently load the DIB to the Windows clipboard.

Example
Movie mMovie;
PicHandle phPicture;
DIBHandle hdPicture;
·
·
// Get the poster frame and convert to Windows DIB

 phPicture = GetMoviePosterPict (mMovie);
 hdPicture = PictureToDIB (phPicture);

// Put the DIB in the clipboard

 OpenClipboard (hWnd);
 EmptyClipboard ();
 SetClipboardData (cf_DIB, hdPicture);
 CloseClipboard ();
 DisposePicture (phPicture);

See Also:

Functions DrawPicture, GetMoviePosterPict, GetMoviePosterTime, MCGetCurrentTime,
GetMoviesError, GetMoviesStickyError

PrerollMovie
Syntax OSErr PrerollMovie (Movie mMovie, TimeValue tvTime, LFIXED

lfxRate)

PrerollMovie prepares a portion of a movie for playback, to enhance playback
performance.

Parameters Movie mMovie
The movie object.

TimeValue tvTime
A TimeValue specifying the starting time of the movie segment to play.

LFIXED lfxRate
Specifies the anticipated rate at which the movie will play. Positive values indicate
forward rates, negative values reverse rates. The rate is used as a multiplier for the
movie's recorded rate.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments Playback performance can be improved if PrerollMovie is called prior to playing a
movie.

Example
Movie mMovie;
TimeValue tvTime;
LFIXED lfxRate;
·
·
PrerollMovie (mMovie, tvTime, lfxRate);

See Also:

Functions GetMoviesError, GetMoviesStickyError

Data Types TimeValue, LFIXED

PtInMovie
Syntax BOOL PtInMovie (Movie mMovie, POINT ptPoint)

PtInMovie determines whether a specified point lies in a movie.

Parameters Movie mMovie
The movie object.

POINT ptPoint
The point to test, in window coordinates.

Return TRUE if the point is in the movie rectangle, FALSE if not. You can use GetMoviesError
and GetMoviesStickyError to test for error conditions.

Comments The specified point must be supplied in window coordinates.

Note: All QuickTime for Windows routines referencing a RECT or POINT assume
client device coordinates.

Example
Movie mMovie;
POINT ptTest;
·
·
if (PtInMovie (mMovie, ptTest))
 {
 /* Take appropriate action. */
 }

See Also:

Functions GetMovieBox, GetMoviesError, GetMoviesStickyError

QTFOURCC
Syntax QTFOURCC(ch0, ch1, ch2, ch3)

QTFOURCC is a macro used to construct a four-character constant, normally used to extract user data
from a movie.

Parameters ch0...ch3

The four characters to be concatenated.

Comments Each parameter must be enclosed in single quotes.

Example
UserData udData;
OSType osType;
·
·
osType = QTFOURCC('Ó','d','a','y');
osType = GetNextUserDataType (udData, osType);

QTInitialize
Syntax OSErr QTInitialize (LPLONG lplVersion)

QTInitialize binds applications to QuickTime for Windows at run time. It must be
called before any other QuickTime for Windows function.

Parameters LPLONG lplVersion
The address of a value that will be filled with the current QuickTime for Windows
version number.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments This function must be called before any other QuickTime for Windows function. It is
recommended that it be called before your program creates its main window. If your
program employs DLLs that make QuickTime for Windows calls, each DLL must call
QTInitialize, preferably in the LibMain function. QTInitialize only needs to
be called once during the life of your program. The return codes can be used to
determine whether QuickTime for Windows is installed and if the hardware is capable
of running it.

If lplVersion is not coded as NULL, QTInitialize fills the value it points to with
the current QuickTime for Windows version: bits 31-16, reserved, always 0; bits 15-12,
major release level; bits 11-8, minor release

level; bits 7-0, revision number. For example, 0x00001000L is QuickTime for
Windows version 1.0.0. A program can use this data to check if it is running under a
certain QuickTime for Windows version, then react accordingly.

Example
LONG lVersion;
·
·
if ((QTInitialize (lVersion) != QTI_OK)
 || (lVersion < 0x00001000L))
 {
 MessageBox (hWnd, "QuickTime for Windows not loaded"
 " or wrong version present.",
 "QuickTime for Windows Initialization", MB_OK);
 return 0;
 }

See Also:

Functions QTTerminate, EnterMovies

QTTerminate
Syntax VOID QTTerminate (VOID)

QTTerminate severs links to QuickTime for Windows.

Parameters None.

Return None.

Comments If your program uses DLLs, each must call QTTerminate, preferably in the WEP
function.

Example
// Cut the connections to QuickTime for Windows

 QTTerminate ();

See Also:

Functions QTInitialize, ExitMovies

SetMovieActive
Syntax VOID SetMovieActive (Movie mMovie, BOOL bActive)

SetMovieActive sets a movie's state to active or inactive.

Parameters Movie mMovie
The movie object whose state is to be changed.

BOOL bActive
TRUE sets the movie state to active, FALSE to inactive.

Return None. Use GetMoviesError and GetMoviesStickyError to test for failure of this call.

Comments An inactive movie does not receive cycles from QuickTime for Windows' internal
scheduler, so it will not play. Setting a movie inactive can be used to control which one
of several simultaneously playing movies will receive system resources. You can
query a movie's active state using GetMovieActive.

Simply setting a movie to the active state does not affect any of its attributes, such as
visibility. You have to explicitly update a window in which a movie appears if the movie
is made active.

Example
Movie mMovie;
·
·
// Deactivate the movie

 SetMovieActive (mMovie, FALSE);

// Re-activate the movie

 SetMovieActive (mMovie, TRUE);

See Also:

Functions GetMovieActive, GetMoviesError, GetMoviesStickyError, MCActivate

SetMovieCoverProcs
Syntax VOID SetMovieCoverProcs (Movie mMovie, CoverProc UncoverProc,

CoverProc CoverProc, LONG lRefCon)

SetMovieCoverProcs sets cover and uncover procedures for your movie.

Parameters Movie mMovie
The movie object.

CoverProc UncoverProc
The address of the uncover procedure.

CoverProc CoverProc
The address of the cover procedure.

LONG lRefCon
A reference constant that is passed to the cover procedure.

Return None. You can use GetMoviesError and GetMoviesStickyError to test for failure of this
call.

Comments This routine allows your program to perform custom processing whenever one of your
movies covers a screen region or reveals a region that was previously covered. This
activity is performed in cover procedures, of which there are two types: those called when
your movie covers a screen region, and those called when your movie uncovers a screen
region that was previously covered. The former is responsible for saving the region (you
may choose to save the hidden region in an offscreen buffer).

Cover procedures called when your movie reveals a hidden screen region may redisplay
the hidden region. If no uncover procedure is supplied, the default action is to paint the
uncovered region with the background brush saved when the movie was created
(GetClassWord, GetObject and CreateBrushIndirect). If no background brush is
found, a solid white brush will be used. There is no default action if you do not supply a
cover procedure.

If you compile your program using Borland smart callbacks or Microsoft's -GEs compiler
option, or your filter function is in a dynamic link library, you do not need to use
MakeProcInstance on your cover procedure address before calling
SetMovieCoverProcs.

Example
OSErr CALLBACK __export MyCoverProc (Movie, HDC, LONG);

HWND hWnd;
Movie mMovie;
·
·
SetMovieCoverProcs (mMovie, MyCoverProc, NULL, 5879);
·
·
OSErr CALLBACK __export MyCoverProc (Movie m, HDC hdc, lID)
 {
 RECT rcClip;
 GetClipBox (hdc, &rcClip);
 FillRect (hdc, &rcClip, GetStockObject (WHITE_BRUSH));
 return 0;

 }

See Also:

Functions CoverProc, GetMoviesError, GetMoviesStickyError

SubtractTime
Syntax VOID SubtractTime (TimeRecord FAR *lptrDst, const TimeRecord FAR

*lptrSrc)

SubtractTime subtracts one time from another.

Parameters TimeRecord *lptrDst
The address of a time record containing the first operand for the subtraction. The time
record is overwritten by the result.

const TimeRecord FAR *lptrSrc
The address of a time record containing the second operand, which remains
unmodified by the operation.

Return None. The result is in the time record referenced by the first parameter. Use
GetMoviesError and GetMoviesStickyError to test for failure.

Comments If the time records have different time scales, SubtractTime converts them.

Example
MovieController mcController;
TimeRecord trOne, trTwo;
·
·
SubtractTime (&trOne, &trTwo);
MCDoAction (mcController, mcActionGoToTime, (LPVOID) &trOne);

See Also:

Functions ConvertTimeScale, GetMovieTimeScale, AddTime, GetMoviesError,
GetMoviesStickyError

MCDoAction mcActionGoToTime

Data Types TimeRecord, TimeScale

UpdateMovie
Syntax OSErr UpdateMovie (Movie mMovie)

UpdateMovie paints the current movie image on demand, rather than at its

scheduled time.

Parameters Movie mMovie
The movie object.

Return Zero if no error condition. Non-zero if error condition. See Appendix A for error
condition values. You can use GetMoviesError and GetMoviesStickyError to test for
failure of this call.

Comments UpdateMovie allows you to manually refresh the current movie image.

Example
Movie mMovie;
·
·
UpdateMovie (mMovie);

See Also:

Functions GetMoviesError, GetMoviesStickyError

B. QuickTime for Windows API - Data Structures
ImageDescription
Int64
LFIXED
OpenCPicParams
SFIXED
SoundDescription
TimeRecord

ImageDescription
Description The ImageDescription structure contains information about a picture file.

Syntax typedef struct // Hungarian: id (ImageDescription)
 {

 LONG idSize;

 DWORD CodecType;

 DWORD resvd1;

 WORD resvd2;

 WORD dataRefIndex;

 WORD version;

 WORD revLevel;

 DWORD vendor;

 DWORD temporalQuality;

 DWORD spatialQuality;

 WORD width;

 WORD height;

 LFIXED hRes;

 LFIXED vRes;

 DWORD dataSize;

 WORD frameCount;

 char name [32];

 WORD depth;

 WORD clutID;

 } ImageDescription;

Fields idSize
 Specifies the structure size.
CodecType
 Specifies the Codec Type:

 'rpza' = Apple video

 'jpeg' = Apple JPEG

 'rle ' = Apple animation

 'raw ' = Apple raw

 'smc ' = Apple graphics

 'cvid' = Compact Video

rsvd1

 Reserved, always 0.

rsvd2

 Reserved, always 0.
dataRefIndex
 Reserved, always 1.
version
 Reserved, always 0.
revLevel
 Reserved, always 0.
vendor
 Reserved, always 0.
temporalQuality
 Reserved, always 0.
spatialQuality
 Reserved, always 0.
width
 Specifies the Source image width in pixels.
height
 Specifies the Source image height in pixels.
hRes
 Specifies the horizontal resolution (e.g. 72.0).
vRes
 Specifies the vertical resolution (e.g. 72.0).
dataSize
 Reserved, always 0.
frameCount
 Reserved, always 0.
name [32]
 Specifies the compression algorithm (e.g. Animation).
depth
 Specifies the pixel depth of the source image.
clutID
 Reserved, always 0.

Comments This structure is populated by QuickTime for Windows calls that request information
about a picture file (for example, GetPictureInfo).

Int64

Description The Int64 structure defines a quad word for use in other structures.

Syntax typedef struct // Hungarian: qw (quad word)
 {

 LONG dwLo;

 DWORD dwHi;

 } Int64;

Fields dwLo
 Specifies the low order double word.

dwHi
 Specifies the high order double word.

Comments This structure is used by the TimeRecord structure.

LFIXED
Description The LFIXED type defines a long integer where the high-order sixteen bits define a

signed short integer representing an integral value and the low-order sixteen bits
define an unsigned short integer representing a fractional value.

Comments LFIXED variables are normally used to hold movie rates in QuickTime for Windows.
For example, the LFIXED value 0x00028000 could be used to represent a rate of
2.5.

See Also:

 Functions MAKELFIXED (macro)

 Data Types SFIXED

OpenCPicParams
Description The OpenCPicParams structure defines the picture file header.

Syntax typedef struct // Hungarian: ocp
 {

 RECT rect;

 LFIXED hRes;

 LFIXED vRes;

 WORD wVersion;

 WORD wReserved1;

 DWORD dwReserved2;

 } OpenCPicParams;

Fields rect
 Specifies a picture rectangle.

hRes
 Specifies the horizontal resolution (e.g. 72.0).

vRes
 Specifies the vertical resolution (e.g. 72.0).

wVersion
 Specifies the version.

wReserved1
 Reserved, always 0.

dwReserved2
 Reserved, always 0.

Comments This structure is populated by QuickTime for Windows calls that return the picture file
header (for example, GetPictureFileHeader).

SFIXED
Description The SFIXED type defines a short integer where the high-order eight bits define a

signed integer value and the low-order eight bits define an unsigned fractional value.

Comments SFIXED variables are normally used to hold movie sound track volumes in QuickTime
for Windows. For example, the SFIXED value 0x0080 could be used to represent a
sound volume of 0.5.

See Also:

 Functions MAKESFIXED (macro)

 Data Types LFIXED

SoundDescription

Description The SoundDescription structure contains information about a movie's sound.

Syntax typedef struct // Hungarian: sd (SoundDescription)
 {

 LONG descSize;

 DWORD dataFormat;

 DWORD resvd1;

 WORD resvd2;

 WORD dataRefIndex;

 WORD version;

 WORD revLevel;

 DWORD vendor;

 WORD numChannels;

 WORD sampleSize;

 WORD compressionID;

 WORD packetSize;

 LFIXED sampleRate;

 } SoundDescription;

Fields descSize
 Specifies the structure size.
dataFormat
 Specifies the data format (always 'raw').
resvd1
 Reserved, always 0.
resvd2
 Reserved, always 0.
dataRefIndex
 Reserved, always 1.
version
 Reserved, always 0.
revLevel
 Reserved, always 0.
vendor
 Reserved, always 0.
numChannels
 Specifies the channels: 1 = mono, 2 = stereo.
sampleSize

 Specifies the sample size: 8 = 8-bit sound, 16 = 16-bit sound.
compressionID
 Reserved, always 0.
packetSize
 Reserved, always 0.
sampleRate
 Sample rate, e.g. 44100.0000 per second.

Comments This structure is populated by QuickTime for Windows calls that request information
about a movie file's sound (see GetSoundInfo).

TimeRecord
Description The TimeRecord structure defines a point in a movie's time coordinate system.

Syntax typedef struct // Hungarian: tr (TimeRecord)
 {
 Int64 value;
 TimeScale scale;
 TimeBase base;
 } TimeRecord;

Fields value
 Specifies a movie time value.

scale
 Specifies the movie's time scale.

base
NULL - means that the TimeRecord specifies a duration, or TIMEBASE_DEFALUT -
means that the TimeRecord specifies a time, relative to the start of the movie.

Comments The minimum TimeValue is 0, which is the very beginning of a movie. A TimeValue
is expressed in time units which are related to the movie's time scale.

The time coordinate system contains a time scale scored in time units. The number of
units that pass per second quantifies the scale: a time scale of 26 means that 26 units
pass per second and each time unit is 1/26 of a second.

When the duration of all or part of a movie is needed, it is expressed as the length of
the portion of the movie in the number of time units it contains. Particular points in a
movie can be identified by a time value, which is the number of time units to that point
from the beginning of the movie.

Different movies may have different time scales. Use ConvertTimeScale to compare
TimeValues between different movies.

Appendix A. QuickTime for Windows Error Codes
-2001 badImageDescription Problem with this image description.
-2002 badPublicMovieAtom Movie file corrupted.
-2010 invalidMovie This movie is corrupted or invalid.
-2011 invalidSampleTable This sample table is corrupted or invalid.
-2014 invalidDuration This duration value is invalid.
-2015 invalidTime This time value is invalid.
-2017 badEditList This track's edit list is corrupted.
-2020 movieToolboxUninitialized You haven't initialized the Movie Toolbox.
-2021 wffileNotFound Cannot locate this file.
-2026 userDataItemNotFound Cannot locate this user data item.
-2027 maxSizeToGrowTooSmall Maximum size must be larger.
-2034 internalQuickTimeError Internal value.
-2036 invalidRect Specified rectangle has invalid coordinates.
-2039 invalidSampleDescIndex Sample description index value invalid.
-2041 invalidSampleDescription This sample description is invalid or corrupted.
-2043 dataNotOpenForRead Cannot read from this data source.
-2045 dataAlreadyClosed You have already closed this data source.
-2048 noMovieInDataFork Toolbox cannot find a movie in the movie file.
-2053 featureUnsupported Movie Toolbox does not support this feature.
-2054 noVideoTrackInMovie No video track found in this movie.
-2055 noSoundTrackInMovie No sound track found in this movie.
-2056 soundSupportNotAvailable Sound support unavailable.
-2057 maxControllersExceeded The limit on movie controllers has been reached.
-2058 unableToCreateMCWindow Cannot create the Movie Controller window.
-2059 insufficientMemory Memory allocation request failed.
-2060 invalidUserDataHandle Request for user data failed based on handle used.
-2061 noPictureInFile File is valid but contains no pictures.
-9995 editingNotAllowed Editing is not supported.
-9996 controllerBoundsNotExact The movie controller bounds are not exact.
0 mcEventNotHandled Movie controller event not handled.
0 mcOK Movie controller OK.
0 noErr Action complete successfully.
0 QTI_OK Initialization is OK.
1 mcEventHandled Movie controller event handled.
1 QTI_FAIL_NOEXIST Initialization failed, system not found.
2 QTI_FAIL_CORRUPTDLL Corrupt DLL found at initialization.
3 QTI_FAIL_286 Cannot initialize on a 80286 platform.
4 QTI_FAIL_WIN30 Cannot initialize on Windows release 3.0.
0x80008001 badComponentInstance Component instance not valid.
0x80008002 badComponentSelector Component selector not valid.

Appendix B. Region Codes
The following codes are used to identify specific languages in the function GetUserDataText when
alternative text or multiple languages are supported. See the description of GetUserDataText for further
information.

verUS 0 verIceland 21

verFrance 1 verMalta 22

verBritian 2 verCyprus 23

verGermany 3 verTurkey 24

verItaly 4 verYugoCroatian 25

verNetherlands 5 verIndiaHindi 33

verFrBelgiumLux 6 verPakistan 34

verSweden 7 verLithuania 41

verSpain 8 verPoland 42

verDenmark 9 verHungary 43

verPortugal 10 verEstonia 44

verFrCanada 11 verLatvia 45

verNorway 12 verLapland 46

verIsrael 13 verFaeroeIsl 47

verJapan 14 verIran 48

verAustralia 15 verRussia 49

verArabic 16 verIreland 50

verFinland 17 verKorea 51

verFrSwiss 18 verChina 52

verGrSwiss 19 verTaiwan 53

verGrverIceland 20 verThailand 54

